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Introduction
Tungsten (W) based alloys are good candidates for high 

temperature applications because of its high melting point, thermal 
shock resistance, high elastic modulus, low thermal expansion 
coefficient and high temperature strength and stiffness[1,2]. Due to 
W high melting point its fabrication is extremely difficult. Recently, 
powder metallurgy (PM) is one of the most interesting methods for 
W powder production since there is a potential field of applications 
in aerospace, chemical, transportation, structural and automotive 
industries [3,4]. Mechanically alloying (MA) technique broadly used 
in PM processing for attaining a homogeneous distribution and fine 
grained matrix [3-7].

MA process give rises to uniform dispersion for the fine 
reinforcements and grain size of the matrix. Reinforcing of the ductile 
W matrix with hard particles such as carbides and oxides provides an 
improvement of physical and mechanical properties of composites 
[3-10]. There is no literature about powder characterization which 
reports on tungsten matrix composites reinforced with VC and TiC 
One theoretical model was proposed in which amorphization was 
assumed to be realized through interstitial impurity formation during 
MA [6,11]. When the local distortions achieved some critical value, 
the long-range order of the lattice was destroyed and an amorphous 
phase formed. It was also shown that the minimum concentration of 
solute atoms needed to amorphize a binary alloy system by MA was 
extremely related to the atomic size ratio of the constituents [6,12]. 
Meantime, measurements of crystallite size and lattice strain is very 
important because of the phase constitution and transformation 
characteristics that critically dependent on them [6]. The contributions 
of crystallite size and internal strain to the broadening of XRD peaks 
can be calculated by using extrapolated W-H method and Gaussian 
rule [13,14].

The objectives of the present study are phase and morphological 
characterization of MA’d W composite powders and investigate the 
effects of mechanical alloying (MA) time and titanium carbide (TiC) 
content on the effective lattice parameter (a), crystallite size and 

lattice strain and amorphization rate of the W-2wt.%VC-1wt.%C 
and W-2wt.%VC-2wt.%TiC-1wt.%C composite powders. Moreover, 
morphologies of powders after MA at various durations were studied 
and their specific surface areas were measured.

Materials and Experimental Procedure
Materials

Elemental tungsten (W) powders (Eurotungstene™, 99.9% purity, 
17 μm) as the matrix of the powder composite and vanadium carbide 
(VC) powders (ABCRTM, 99.9% purity, 7 μm) and titanium carbide 
(TiC) powders (Alfa Aesar™, 99.9% purity, 15 μm) reinforcing 
particles were utilized in this investigation. Moreover, 1 wt% graphite 
powders (Alfa Aesar™, 99.9% purity, 21 µm) were added to each batch 
as a process control agent (PCA) to eliminate cold welding between 
powder particles and thereby to prevent agglomeration.

High energy ball milling

W, VC, TiC and C powders were blended to constitute the 
compositions of W-2wt.%VC-1wt.%C and W-2wt.%VC-2wt.%TiC-
1wt.%C (thereafter referred to as W-2VC-1C and W-2VC-2TiC-1C) 
which were mechanically alloyed for 1, 3, 6, 12 and 24 h. High-energy 
milling experiments were carried out in a Spex™ DuoMixer/Mill 
8000D using a tungsten carbide (WC) vial and WC balls (6.35 mm 
in diameter) as milling media. The ball-to-powder weight ratio (BPR) 
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was 10:1. To avoid oxidation during MA, the vials were sealed inside a 
Plaslabs™ glove box under Ar gas (99.995% purity).

Morphological analysis

Morphological characterizations were carried out using the 
Jeol™ WX-36210DPP EDS unit (Energy Dispersive Spectrometer) 
with an accelerating voltage 15 kV. Particle distribution, size and 
morphologies were investigated by using SEM images. Powder particle 
size measurements were carried out in a Malvern™ Master-sizer 
Laser particle size analyzer. Furthermore, MA’d nano particle size 
distributions were measured by a Microtrac™ NANO-flex In-situ 
particle size analyzer.

Structural evolutions

X-ray diffraction (XRD) measurements were carried out in a 
Bruker™ X-Ray Diffractometer (λ=1.5405Å) at 35 kV and 40 mA 
settings in the 2Ɵ range from 30° to 110° at a scanning speed of 2° 
min-1. To eliminate equipment effects, the LaB6 crystal was used as a 
standard sample. The crystallite size and lattice strain were estimated 
using the Williamson–Hall method [15].

cos 4s
K sin
D
λ

β + θ = + ε θ 			                 (1)

where βs is the full-width at half-maximum of the diffraction peak, Ɵ is 
the diffraction angle, λ is the X-ray wavelength, D is the crystallite size 
and Ɛ is the lattice strain and K is constant equal 0,9. β1s can be given as:

2 2 2= ∫ −s e iβ β β 			    	                 (2)

Where βi is the width at half-maximum of the LaB6 powder peaks 
used for calibration and βe is the width at half-maximum of the W. It 
is clear that when βs cos Ɵ is plotted against sinƟ, a straight line with 
slope (Ɛ) and intercept Kλ/D is obtained [16]. Lattice parameters were 
determined by using three major diffraction peaks of tungsten {(110), 
(200) and (211)} in order to increase the precision of the measurements. 
Meanwhile, lattice strain and crystallite size were measured by 
Gaussian methods via TOPAS 3 (BRUKER AXS). Besides, the percent 
crystallinity were calculated by using EVA Bruker™ software.

Powder density and surface area measurement

Bulk densities of MA’d nano-sized powder composites were 
measured using a Micromeritics AccuPyc™ II 1340 helium pycnometer. 
The specific surface area of the nano powder composites was measured 
using a surface area analyzer (Quantachrome Instruments™ 
Autosorb-1 Series, Surface Area and Pore Size Analyzers). The 
specific surface area of nano powder composites was calculated by 
the Brunauer–Emmett–Teller (BET) method. Sample surface was first 
regenerated to remove the adsorbed gases and moisture by degassing 
in vacuum at 180°C. Specific surface area was calculated by measuring 
the volume of N2 adsorbed using a modified multi point BET equation.

Results and Discussion
Morphology

Figure 1a-1f are representative SEM micrographs of MA’d 
W-2VC-1C and W-2VC-2TiC-1C nanocomposite powders milled at 
durations of 1 h, 6 h and 24 h, respectively. It is appointed that the 
particle size is changing with mechanical alloying time, because of the 
two opposing phenomena of cold welding and fracturing of powders 
[6]. 1 h milling, the powders exhibit large irregular shapes, see Figure 
1a and 1d, and then were dramatically changed in particle sizes after 6 

h milling, as shown in Figure 1b and 1e. After 24 h MA time, more fine 
and homogeneous particle size distribution were shown in Figure 1c 
and 1f. It suggests that with continued plastic deformation the particles 
were hardened and fractured by fatigue failure or fragmentation [17]. 
MA’d W-2VC-2TiC-1C powders have some greater particles than 
W-2VC-1C at same MA durations. It means that, TiC declined particle 
size decreasing rate. This phenomena was approved by particle size 
distribution which measured in nano-sizer (Microtrac™ NANO-flex). 
It should be established that the mechanical alloying process not only 
refines the powder but also causes significant lattice strain and hence 
increases the dislocations in the powder crystals [18]. Such results are 
in agreement with those reported in different papers concerning the 
production of powders by high energy ball milling [6-9,19,20].

Structural analysis

X-ray diffraction patterns of W-2VC-1C and W-2VC-2TiC-1C 
powder composites for different milling times are shown in Figures 
2 and 3. The XRD patterns of powders reveal the presence of the 
characteristic peaks of the W phase which has a b.c.c. Bravais lattice 
and Im3m space group with the lattice parameter of a=0.316 nm 
[Powder Diffraction Files: Card No. 04-0806, database edition, The 
International Centre for Diffraction Data (ICDD)]. Only W peaks 
can be seen and characteristic peaks of VC, TiC and C do not appear 
because of their low amounts (Figures 2 and 3).

With increase in milling time, XRD peak intensities reduced 
drastically due to the reduction of powders particles to submicron sizes 
and/or the low volume fraction of the mechanically alloyed powders 
[21-23].

 (a) 

(b) 

(c) 

 (d) 

 

 (e) 

 

 (f) 

Figure 1: SEM micrographs of Nano powder composites for different MA 
times. a: 1 h, b: 6 h, c: 24 h for W-2VC-1C and d: 1 h, e: 6 h, f: 24 h for W-2VC-
2TiC-1C.
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Figures 2 and 3 show the blow-up regions of XRD patterns in the 
vicinity of the major peak {110} of W at different milling times for the 
W-2VC-1C and W-2VC-2TiC-1C nanocomposites, respectively. That 
the W (110) peak shifts to lover angles with increasing milling time as 
shown in Figures 2 and 3 is a clear indication of increased C solubility 
in the W matrix and lattice internal strain induced by MA impaction 
[8]. Further increase in MA duration results in further broadening 
of the peaks of both phases as a result of grain refinement and build 
up strain during MA. Moreover, increasing the milling time leads to 
broadening of the W peaks and decreasing of their intensities, which 
demonstrate reduction in crystallite size and accumulation of strain in 
the materials [10,24].

The effect of milling time on the crystallite size and the strain of 
composite powders is illustrated in Figures 4 and 5. The lattice strains 
and the crystallite size of the powders were calculated by Gaussian and 
Williamson-Hall (W-H) methods. The crystallite sizes and the retained 
strain of the MA’d composite powders were measured by using TOPAS 
3 (Bruker™ AXS) software with Gaussian techniques [25]. Also, Eq.1 
was used to calculate these values from XRD data in W-H method. 
The peak broadening owing to the crystallite size and the lattice strain 
increases rapidly with increasing Ɵ, but the separation between these 
two values is clearer at smaller Ɵ. So, it is reasonable to utilize peaks 

with smaller Ɵ to distinct these two effects [10,16]. Thus crystallite size 
and strain was determined using 3 small angle peaks {(110), (200) and 
(211)} in order to enhance the precision of the measurements.

The effect of milling time on the strain of composite powders is 
presented in Figure 4. As shown in this figure, internal lattice strain of 
W-2VC-1C and W-2VC-2TiC-1C calculated via W-H and Gaussian 
methods were increased by increasing MA time. Up to 6 h for W-2VC-
1C and W-2VC-2TiC-1C powder compositions, the strain values (0.651 
and 0.652 respectively) increase rapidly and from 6-24 h strain values 
(1.323 and 0.884 after 24 h respectively) enhancement occurs slowly 
in W-H method. While strain values obtained by Gaussian method 
approximately increased linearly. Crystal defects such as dislocations 
and point defects were increased via MA [16,26]. The formed defects 
increase internal lattice strain and energy so it becomes unstable. The 
dislocations rearrange themselves to a lower energy state leading to 
the formation of sub-grain. At longer times of milling and therefore, 
higher plastic deformation and generation of more dislocations, the 
misorientations between sub-grains at their boundaries increase and Figure 2: X-ray diffraction pattern of W-2VC-1C for different MA times.

Figure 3: X-ray diffraction pattern of W-2VC-2TiC-1C for different MA times.

Figure 4: W-2VC-1C and W-2VC-2TiC-1C strain via different methods 
(Gaussian, Williamson-Hall) for different MA times.

Figure 5: Calculated crystallite size via different methods (Gaussian, 
Williamson-Hall) for different MA times (a) W-2VC-1C, (b) W-2VC-2TiC-1C.

http://www.jtaphys.com/content/pdf/2251-7235-6-6.pdf
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finally, they convert to high angle boundaries and become grains with 
nano sizes [10,26,27].

Crystallite size variations of W-2VC-1C and W-2VC-2TiC-1C 
matrix versus MA time are offered in Figure 5. For W-2VC-1C and 
W-2VC-2TiC-1C compositions, up to 6 h, the crystallite size decreases 
rapidly (5.614 nm and 12.700 nm respectively) and then diminishes 
slowly (3.317 nm and 3.066 nm respectively for 24 h) in W-H method. 
Meantime, crystallite size amounts were measured by Gaussian method 
like W-H method.

In Figure 6a, crystalized rate and lattice parameter versus MA 
time for W-2VC-1C and W-2VC-2TiC-1C powder composites were 
illustrated. The crystallization rate of W-2VC-1C and W-2VC-2TiC-
1C powder composites linearly decreased to 82% and 80% respectively 
MA time increment. TiC addition increased amorphization rate of the 
W-2VC-1C powder composites. During MA, destabilization of the 
crystalline phase is thought to occur by the accumulation of structural 
defects such as vacancies, dislocations, grain boundaries, and anti-
phase boundaries. These defects raise the free energy of the system to 
a level higher than that of the amorphous phase and accordingly, it 
becomes possible for the amorphous phase to form [16]. These figures 
illustrate that (200), (220) and (310) peaks were disappeared after 24 h 
MA time. That approves amorphization rate increment by MA.

Figure 6b shows that “a” values increase by MA time increment. 
It means that, lattice parameter expanded and lattice interplaner 
distances increased. This fact relates XRD peaks slipping toward the 
lower angles due to MA period increment. As shown in Figure 6b with 
up to 24 h MA, lattice parameter (a) increases due to interstation of C 
atoms into W lattice [6] and grain refinement [28,29]. This was inferred 
by the clear shift of the W peaks toward lower angles (Figures 2b and 3b).

Powder density and specific surface area

Powder theoretical densities of W-2VC-1C and W-2VC-2TiC-1C 
composites are 17.18 and 16.40 g/cm3 respectively, which decreased to 
13.30 and 13.62 g/cm3 after 24 MA respectively. After 24 h MA duration, 
d50 particle size measured as ~228 nm and ~174 nm for W-2VC-1C and 
W-2VC-2TiC-1C respectively. This is supported with SEM analysis 
in Figure 1c-1f, W-2VC-2TiC-1C powder composites have smaller 
particle size than W-2VC-1C, and similarly, after 24 h MA duration, 
specific surface areas values of W-2VC-2TiC-1C increase more than 
W-2VC-1C.

Conclusions
The morphological and structural changes of W-2VC-1C and 

W-2VC-2TiC-1C powder composites during mechanical alloying were 
studied. From this study the following conclusions could be drawn:

1. Mechanical alloying process not only refines the W-2VC-1C and 
W-2VC-2TiC-1C composite powder but also causes significant lattice 
strain and hence increases the dislocations in the powder crystals.

Addition of TiC declined particle size decreasing rate.

2. By solution of C atoms in the W matrix due to MA, the 
characteristic peaks of W shift toward lower angles.

3. Up to 6 h MA time for W-2VC-1C and W-2VC-2TiC-1C powder 
compositions, the strain values (0.651 and 0.652 respectively) increase 
rapidly and from 6-24 h strain values (1.323 and 0.884 after 24 h MA 
time respectively) enhancement occurs slowly in W-H method. While 
strain values obtained by Gaussian method approximately increased 
linearly.

4. For W-2VC-1C and W-2VC-2TiC-1C compositions, up to 6 h 
MA time, the crystallite size decreases rapidly (5.614 nm and 12.700 
nm respectively) and then diminishes slowly (3.317 nm and 3.066 nm 
respectively for 24 h) in W-H method. Meantime, crystallite size values 
measured by Gaussian method like W-H method.

5. The crystallization rate of W-2VC-1C and W-2VC-2TiC-1C 
powder composites linearly decreased to 82% and 80% respectively 
after 24 h MA time. TiC addition increased amorphization rate of the 
W-2VC-1C powder composites.

6. The characteristic W peaks (200), (220) and (310) were 
disappeared after 24 h MA time.

7. In both compositions, lattice parameter expanded and lattice 
interplaner distances increased due to MA period increment.

8. After 24 MA time, powder densities decreased from 17.18 and 
16.40 g/cm3 to 13.30 and 13.62 g/cm3 respectively.
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Figure 6: Variation of crystallite rate and lattice parameter as a parameter of MA time for W-2VC-2TiC-1C and W-2VC-2TiC-1C nanocomposites.
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