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Abstract

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) which regulates the proliferation
of cancer cells especially non-small cell lung cancer (NSCLC). NSCLC growth is inhibited by EGFR tyrosine kinase
inhibitors (TKI) such as erlotinib or gefitinib. Gefitinib is used to treat NSCLC patients who have EGFR mutations.
EGFR tyrosine phosphorylation is regulated by G protein-coupled receptors (GPCR) such as the neurotensin (NTS)
receptor. EGFR transactivation caused by NTS addition to NSCLC cells is inhibited by SR48692 (NTSR1 antagonist)
or gefitinib. SR48692 and gefitinib are synergistic at inhibiting NSCLC proliferation. The results indicate that GPCR
antagonists can potentiate the effects of TKI in cancer.
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Introduction
High concentrations of receptor tyrosine kinases (RTK) such as the

Epidermal Growth Factor Receptor (EGFR, erbB1) are present in
certain cancers such as non-small cell lung cancer (NSCLC) [1]. After
binding ligands such as EGF, heparin binding (HB-EGF), transforming
growth factor (TGF α) or amphiregulin, the EGFR can form
homodimers with itself or heterodimers with other receptor tyrosine
kinases (RTK) such as HER2 (erbB2) [2]. This increases tyrosine
phosphorylation of protein substrates such as the mitogen activated
protein kinase (MAPK) or phosphatidylinositol-3 kinase (PI3K)
leading to increased cancer cellular proliferation and survival [3].

NSCLC, which kills approximately 130,000 citizens annually in the
USA, is traditionally treated with combination chemotherapy;
however, the 5-year survival rate is only 16% [1]. Approximately 13%
of the NSCLC patients have mutated EGFR due to exon 19 deletions or
exon 21 mutations such as L858R [4]. The mutated EGFR has
increased tyrosine kinase activity resulting in the tyrosine
phosphorylation of the EGFR. The patients with mutated EGFR can be
treated with tyrosine kinase inhibitors (TKI) such as gefitinib or
erlotinib, but after a year secondary EGFR mutations can occur such as
T790 M resulting in TKI resistance [4]. There is a need to increase the
sensitivity of NSCLC patients to TKI.

The phosphorylation of the EGFR is regulated by G protein-coupled
receptors (GPCR) for neurotensin (NTS) within minutes after addition
of ligand to NSCLC cells [5]. The expression of RTK such as ErbB1,

ErbB2 or ErbB3 is increased by NTS days after addition to NSCLC
cells [6]. The tyrosine phosphorylation of the EGFR caused by NTS
addition to NSCLC cells is impaired by the NTSR1 antagonist SR48692
and the TKI gefitinib. In this communication, the mechanism by
which NTS causes EGFR transactivation is reviewed.

NTS ligand
Neurotensin (NTS) is a 13 amino acid peptide which is biologically

active in the central nervous system (CNS). When released from
hypothalamic brain neurons, NTS causes analgesia, hypothermia and
modulates dopamine signaling in the CNS [7]. NTS may be a
neuromodulator in the CNS whereby it is released from brain neurons
and activates receptors in adjacent cells. In cancer, NTS is an autocrine
growth factor. NTS is abundant in small cell lung cancer (SCLC) [8]
and medullary thyroid carcinoma [9]. NTS is secreted from SCLC and
binds with high affinity to SCLC cells [10]. The action of NTS is
mediated by NTSR1 in cancer cells and NTS stimulates the growth of
SCLC cells. SR48692 is a non-peptide NTSR1 antagonist [11] which
inhibits the proliferation of pancreatic, prostate and SCLC cells in vitro
and in vivo [12-14].

NTS is synthesized as a 170 amino acid precursor protein (prepro-
NTS) which lacks biological activity [15]. A signal protease cleaves
prepro-NTS to pro-NTS (147 amino acids) which is inactive. A
proprotein convertase enzyme and carboxypeptidase cleaves pro-NTS
to NTS (13 amino acids) which is biologically active and Neuromedin
N (5 amino acids). Table 1 show that the C-terminal hexapeptide of
NTS (NTS8-13) is biologically active. Degradation of NTS at the Arg8-
Arg9 or Pro10-Tyr11 amide bonds by endopeptidases leads to inactive
products [16]. NTS is secreted from the SCLC cells when the cellular
cAMP is elevated [8]. The secreted NTS binds to cell surface receptors
causing an autocrine SCLC proliferation.

NTS receptors
NTS binds with high affinity (Kd=4 nM) to NSCLC cells which have

1500 receptors/cell [5]. Table 1 shows that Ac-NTS8-13, NTS8-13 and
SR48692 inhibit specific 125I-NTS binding with high affinity (IC50=7,
10 and 205 nM, respectively); acetylation of the N-terminal of
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NTS8-13 increases its potency. In contrast, NTS1-8 and levocabastine
(NTSR2 agonist) were inactive with IC50 values greater than 2000 nM.
Reubi et al. [17] found a high density of specific (125I-Tyr3) NTS
binding sites in Ewing’s sarcoma and medullary thyroid cancers using
autoradiographic techniques. In NSCLC, NTS and NTSR1
immunoreactivity are present in approximately 60% of lung
adenocarcinoma biopsy specimens [18]. NTSR1 is present in
numerous cancers.

The human NTSR1 contains 418 amino acids and 7 transmembrane
(TM) domains. Asn at positions 4, 37 and 41 of the NTSR1
extracellular N-terminal can be N-glycosylated whereas Cys at
positions 381 and 383 of the NTSR1 intracellular C-terminal can be S-
palmitoylated. SR48692 binds to a deep protein binding pocket
anchored by TM6 and TM7 and numerous amino acids are essential
for high affinity SR48692 binding e.g. Tyr319, Arg323, Phe326, Tyr346,
Thr349, Phe353 and Tyr354 [19]. In contrast, the NT8-13-NTSR1
complex has been crystalized and NT8-13 sits on top of the NTSR1
binding pocket and binds with high affinity to Asn360, Pro361 and
Tyr364 [20]. The greatest number of contacts between NTS8-13 and
NTSR1 occur at extracellular loops 2 and 3 and TM domains 6 and 7.
When NTSR1 is occupied by SR48692, NTS cannot bind and cause
signal transduction.

NTS signal transduction
When activated the NTSR1 interacts with a G protein (Gq) causing

phosphatidylinositol (PI) turnover in a phospholipase C dependent
manner [21]. PI-4,5-bisphosphate is metabolized to inositol-1,4,5-
trisphosphate (IP3) and diacylglycerol (DAG) which elevates cytosolic
Ca2+ [22] and activates protein kinase (PK)C, respectively [23]. The
PKC can cause phosphorylation of ERK, PKD, focal adhesion kinase
and Src [24-27]. In a ligand independent mechanism, Src can directly
phosphorylate the EGFR at Tyr845 [28]. In the triple membrane
passing signal pathway, NTSR1 activation causes shedding of EGFR
ligands from the plasma membrane (PM). Matrix metalloproteases
(MMP) of the disintegrin and metalloproteinase (ADAM) family
cleave inactive precursors e.g. the 160 amino acid prepro-TGFα in the
PM into biologically active TGFα (50 amino acids) which is secreted
into the extracellular fluids. The EGFR has a 621 amino acid
extracellular N-terminal and subdomains II and IV are structural in
nature and enriched in Cys amino acids. Subdomains I and III bind
EGF, TGFα, amphiregulin or HB-EGF with high affinity. The EGFR
has a single TM domain (24 amino acids) and an intracellular tyrosine
kinase domain (541 amino acids) and C-terminal. The EGFR kinase
domain binds ATP at Lys721 and transfers the phosphate to tyrosine
amino acids on proteins such as PI-3-kinase (K), Phospholipase C and
the EGFR. When gefitinib blocks the catalytic site of the EGFR, ATP
cannot bind and cause the phosphorylation of Tyr992, Tyr1045,
Tyr1068, Tyr1086, Tyr1148 or Tyr1173 of the EGFR. The EGFR
interacts with the adapter proteins GRB2 and SHC. This activates the
SOS protein leading to the metabolism of GTP by RAS. RAS activates
the kinase RAF leading to the activation of MEK which phosphorylates
ERK. Phosphorylated ERK enters the nucleus and increases expression
of the nuclear oncogenes c-fos and c-jun after 1 hour. NTS addition to
glioblastoma cells up-regulates c-myc but down regulates miR-29b-1
and miR-129-3p [29]. The c-fos and c-jun form heterodimers and
increase expression of growth factor genes such as neurotensin/
neuromedin N [30].

RTK transactivation
NTS analogs were added to NCI-H1299 NSCLC cells and the

tyrosine phosphorylation of the EGFR determined by Western blot.
(Figure 1A and 1B) shows that addition of NTS to NSCLC cells
increases P-EGFR significantly after 0.5 min and the effect is maximal
after 2 min. In contrast, NTS has no effect on total EGFR after 2 min.
The effect of NTS on P-EGFR is dose-dependent and half-maximal
tyrosine phosphorylation of the EGFR occurs using 5 nM NTS (Figure
1C and 1D). Structure-activity studies showed that NTS, Ac-NTS8-13,
NTS8-13 but not NTS1-8 increase phosphorylation of the EGFR
(Figure 1E and 1F). Addition of NTS to NSCLC cells for 2 min
increased tyrosine phosphorylation of the EGFR 3-fold which was
inhibited by SR48692, siRNA for NTSR1 and gefitinib [5]. Addition of
JMV449, a NT8-13 analog, to NSCLC cells for 48 hours increased
expression of EGFR, HER2 and HER3 approximately 2-fold [6]. Also,
JMV449 increased P-EGFR, P-HER2 and P-HER3 which was reversed
by SR48692. JMV449 increased MMP1 resulting in elevated HB-EGF
and Neuregulin-1 which activate the EGFR and HER3, respectively.

Figure 1: Regulation of EGFR transactivation by NTSR1. (A) The
ability of 100 nM NTS to increase tyrosine phosphorylation of the
EGFR in NSCLC cells was investigated as a function of time. Total
EGFR was unaltered. (B) The mean P-EGFR+S.D. of 3
determinations is indicated; p<0.05*, p<0.01** by ANOVA. (C) The
ability of NTS to increase tyrosine phosphorylation of the EGFR in
NSCLC cells at 2 min was investigated as a function of dose. Total
EGFR was unaltered. (D) The mean P-EGFR+S.D. of 3
determinations is indicated; p<0.01** by ANOVA. (E) The ability of
100 nM NTS, NTS8-13, NTS1-8 or Ac-NTS8-13 to increase
tyrosine phosphorylation of the EGFR in NSCLC cells was
investigated after 2 min. Total EGFR was unaltered. (F) The mean
P-EGF+S.D. of 3 determinations is indicated; p<0.01** by ANOVA.

Reactive oxygen species (ROS) are essential for NTS to cause EGFR
transactivation. GPCR may cause p-47phox phosphorylation leading
to the activation of NADPH oxidase increasing ROS [31]. The ROS
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may oxidize protein tyrosine phosphatases reducing catalytic activity
resulting in a transient increase in EGFR tyrosine phosphorylation
[28]. The transactivation of the EGFR regulated by NTSR1 is impaired
by Tiron (superoxide scavenger) and diphenyleneiodonium (NADPH
oxidase inhibitor) [5].

NTS causes EGFR transactivation in numerous cancers including
prostate cancer, colon cancer and foregut neuroendocrine tumors
[23,32,33]. Gastric cancer patients whose tumors had high levels on
NTSR1 immunoreactivity had poor patient survival [34]. Addition of
NTS to NSCLC cells caused tyrosine phosphorylation of the EGFR, Src
and β-catenin in a PKC-dependent manner [5]. When β-catenin is
phosphorylated, it dissociates from E-Cadherin and enters the nucleus
altering gene expression of the NTSR1. In hepatocellular carcinoma,
NTS/NTSR1 co-expression is activated the Wnt/β-catenin signaling
pathway enhancing epithelial to mesenchymal transitions promoting
tumor metastasis [35].

Proliferation
The NTSR1 regulates the proliferation of NSCLC cells. Addition of

NTS stimulated the proliferation of NSCLC cells whereas SR48692
inhibits the proliferation of NSCLC cells in a cytostatic manner (Table
1). SR48692 potentiated the cytotoxicity of gefitinib in a synergistic
manner [5]. Breast cancer tumors grew faster in nude mice if they had
high levels of NTS [36]. Tumors with high levels of NTS had elevated
EGFR, HER2 and HER3 and their phosphorylated derivatives. The
high levels of P-EGFR, P-HER2 and P-HER3 were reversed if the mice
were treated with SR48692. The breast tumors with elevated NTS had
increased MMP9 resulting in increased secretion of HB-EGF and
Neuregulin-2. Approximately 43% of the biopsy specimens from
NSCLC patients had immunostaining for NTSR1. The survival of
NSCLC patients who had high NTSR1 levels was significantly reduced
relative to NSCLC patients whose tumor had low levels of NTSR1 [6].
It remains to be determined if SR48692 will potentiate the effects of
TKI in NSCLC patients. The NTSR1 gene is present in many colon
cancer biopsy specimens. Methylation of the NTSR1 gene is associated
with increased patient survival [37]. NTSR1 expression is reduced by
histone deacetylase inhibitors in colorectal cancer cell lines resulting in
decreased proliferation [38]. These results indicate that NTSR1 levels
can be regulated by epigenetic mechanisms.

Ligand IC50, nM % Proliferation

NTS 4+1 176+19**

Ac-NTS8-13 7+1 157+16*

NTS8-13 10+3 143+18*

SR48692 205+31 48+7*

NTS1-8 >2000 103+11

Levocabastine >2000 102+12

Gefitinib >2000 62+8*

None ND 100+7

SR4869+Gefitinib ND 23+5**

Table 1: Effect of ligands on NSCLC cells The IC50+S.E. of 3
determinations to inhibit specific 125I-NTS binding to NSCLC cells
are indicated. The % mean colony number+S.E. of 3 determinations is

indicated using NSCLC cells; P<0.05*, P<0.01** by ANOVA. The ligand
structures are shown below: (1) NTS: Pyr-Leu-Tyr-Glu-Asn-Lys-Pro-
Arg-Arg-Pro-Tyr-Ile-Leu. (2) SR48692: 2{[1-(7-chloro-4-
quinolinyl)-5-(2,6)-dimethoxyphenyl]-1H-pyrazole-3-yl-
carbonyl}amino)tricycle[3,3,1,13]decane-2-carboxylic acid. (3)
Gefitinib N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-
ylpropoxy) quinazoline-4-amine.

Conclusion
Gefitinib and erlotinib are used currently to treat NSCLC patients

who have failed chemotherapy and have EGFR mutations. Due to low
potency TKI are not used in patients with wild type EGFR. The
potency of gefitinib can be increased in cells with wild type EGFR
using GPCR antagonists such as SR48692 [5]. The NTSR1 is an
excellent molecular target in cancer and its expression in NSCLC,
breast and gastric tumors is associated with poor patient survival.

There are multiple GPCR in cancer cells which can regulate RTK
transactivation. Peptide GPCR include angiotensin, bombesin,
bradykinin, cholecystokinin, endothelin, pituitary adenylate cyclase
activating peptide and substance P, all of which interact with Gq and
cause PI turnover [39]. RTK which can be transactivated include
erbB1, erbB2, erbB3, platelet derived growth factor receptor and Trk.
There are numerous GPCR antagonists which may potentiate the
ability of TKI to inhibit the growth of cancer cells.
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