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Introduction
The electrolyte is the central part of a Solid Oxide Fuel Cell (SOFC), 

which is sandwitched between cathode and anode. The oxygen ions 
(O2-) reduced on cathode or proton (H+) oxidized on anode sides is 
transported through the electrolyte materials and reacts with hydrogen 
or oxyegen, respectively, to form water on either side of the cell. 
The electrons (e-) generated due to the reaction pass in the opposite 
direction through the outer circuit [1]. There are two types of materials: 
oxide ion and proton conducting electrolytes.

Its electronic conductivity must be kept as low as possible to prevent 
losses from leakage currents. The high operating temperatures of SOFCs 
allow the kinetics of oxygen ion transport to be sufficient for good 
performance. However, as the operating temperature approaches the 
lower limit for SOFCs at around 600°C, the electrolyte begins to have large 
ionic transport resistances and affect the performance. Popular electrolyte 
materials include yttrium stabilized zirconia (YSZ) (often the 8% form 
Y8SZ), scandia stabilized zirconia (ScSZ) and gadolinium doped ceria 
(GDC) [2]. Materials choice for this purpose is difficult because attention 
must be paid to many parameters such as gas tightness, electronically non-
conducting, chemical stability over a wide oxygen partial pressure (1-10-21 
atm) and temperature range, good bending strength etc [3].

Materials for electrolyte of solid oxide fuel cell 

The basic reactions for the generation of electricity directly 
from electrochemical reaction are given below: 

For oxide ion generating reaction: 

1/2 O2 + 2e - = O2-

H2 + O2- = H2O + 2e -

2H2 + O2 = 2H2O    (1)

The reaction of hydrogen and oxygen is an exothermic one that 
produces heat about 57 kcal per mole of reactant. 

For proton generating reaction: 

H2 = 2H+ + 2e -

1/2 O2 + 2e - = O2-

2H+ + O2- = H2O     (2)

Electrons generated from the above reactions flows through the 
outer circuit so as to provide electricity [4]. 

Oxide ion conducting electrolytes 

Oxide ion conducting electrolytes cover a wide range of materials 
which basically include fluorite-, perovskite-, brownmillerite- structured 
materials. 

Fluorite-structured electrolytes 

This structure is adopted by ceria at room temperature and zirconia 
at high temperature. Basically zirconia and ceria based materials are 
widely investigated for its application as electrolyte in solid oxide fuel 
cell (SOFC) [2]. Zirconia is stabilized to its cubic structure at room 
temperature by the addition of divalent and trivalent cations [5,6]. 
Ceria forms solid solutions with many divalent and trivalent cations 
which show fluorite structure at room temperature and takes part in 
ionic conduction [7]. Yittria stabilized zirconia is not the best ionic 
conductor [8]. Bismuth oxide-based materials, ceria-based materials 
and strontium doped lanthanum oxide show better conductivity than 
showed by zirconia-based materials. T. Takahashi et al reported 
the same about bismuth oxide-based materials [9]. Among all these 
materials δ-Bi2O3 has an oxygen deficient fluorite structure where 
1/4th the normal fluorite anion sites are vacant. This is the reason 
for its very high conductivity. But the drawback of this material is 
that it suffers from chemical instability. It is of monoclinic structure 
at room temperature, but cubic at high temperature. It gets readily 
reduced at low oxygen partial pressure and decomposes into bismuth 
metal at oxygen partial pressure of about 10-13 atm [10,11]. Therefore, 
the practical use of bismuth oxide as electrolyte of SOFC is under serious 
question. So it is better to go for ceria and zirconia-based materials for the 
application as electrolyte in SOFC.
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Zirconia-based oxide ion conductors 

The solid electrolytes to be used for high temperature fuel cell 
should have a good number of properties such as high oxide ion 
conduction with negligible electronic conductivity, phase stability, 
non-porous, good mechanical strength, thermal shock resistance, 
chemical inertness to the reactive gas, compatibility with electrode 
in the view of thermal expansion coefficient and chemical inertness 
towards the electrodes. These requirements are sufficiently fulfilled by 
doped zirconia. Addition of some rare earth, alkaline earth and 
lanthanide oxides stabilizes monoclinic zirconia to cubic fluorite 
phase at room temperature; moreover, this addition enhances ionic 
conductivity to an extended oxygen partial pressure range of SOFC 
operation. This range covers 1 to 10-18 atm pressure which an SOFC 
electrolyte has to face at the anode side during operation at high  
temperature while other renowned electrolyte, doped ceria, 
fails due to its electronic conduction and poor mechanical 
strength. The oxides which have come to the forefront for their 
use as dopants for zirconia are calcia (CaO), magnesia (MgO), 
scandia (Sc2O3) and yittria (Y2O3). Stabilized zirconia is stable 
over wide temperature range, in this range ionic conductivity is 
independent of oxygen partial pressure over several orders of 
magnitude [12,13]. Yittria stabilized zirconia (YSZ) shows electronic 
conductivity at oxygen partial pressure of 10-30 atm which is far 
below the pressure range of 0.21 - 10-20 atm during the operation of 
SOFC [14]. Its oxygen transference number is one over a wide  
range of temperature and oxygen partial pressure [15]. 

From Table 1, considering the resistivity data it can be concluded 
that calcium is not a better dopant than yittria. It has been established 
that clusters comprising of two oxygen vacancies at the opposite ends 
of a body diagonal in one of the anion cubes of the fluorite structure 
exist throughout the body. It is presumed that this vacancy dimmer 
is stabilized by trivalent ions [7]. The association is called cluster. It is 
assumed that these clusters exist in a group, not in isolation. In some 
cases ordered phases (Ca2Zr4O9) get precipitated out, but still there is 
a controversy [15-17]. There are also evidences for short range order. 
As for example, Yittria doped zirconia shows short range order [18]. 
The site exclusion principle states that the presence of a cluster at a site 
prevents other clusters from occupying adjacent sites in the lattice 
[7].

Literature reported that conductivity increases with dopant 
concentration upto a certain amount which is required to fully 
stabilize monoclinic zirconia to its cubic fluorite structure [13]. 
Conductivity decreases with further addition of dopant. This 
decrease can be explained in terms of dopant-vacancy interactions. 
For low dopant concentration, the aliovalent ions will be isolated in the 
host cation sites and very few of them will share a common oxygen site. 
Therefore, the interaction between dopant ions and oxygen vacancies 
leads to the formation of shor range clusters which can be described as 
dopant-vacancy complex, while the other dopants will bear effective 
negative charge compared to zirconium ion. As for example, one half 
of the dopant ions will be in cluster with oxygen vacancies since two 
yttrium ions produce one oxygen ion vacancy. Since this cluster 

formation process is reversible, dissociation of this complex also 
occurs. When concentration of dopant increases the probability of 
formation of a cluster containing two dopants with a single oxygen 
vacancy gets enhanced. This cluster acts as trap due to coulombic 
interaction. So, the mobility of oxygen vacancies gets reduced 
[19,20]. Yittria is widely used as the stabilizer for zirconia because 
of its abundance and cost effectiveness compared to other dopants [3]. 
Scandia and ytterbia have also found application due to their better ionic 
conductivity; but yttria doping is widely used due to the above mentioned 
reasons. Literatures report that 8 - 10.5 mol% yittria stabilizes zirconia 
to its cubic structure [21]. Literature also reported the doping of 
zirconia with more than one cations instead of only one cation [22, 
23]. As for example, such compositions are zirconia doped with yittria 
(Y2O3), scandia and ytterbia (Yb2O3) (composition 1), zirconia (ZrO2) 
doped with yittria (Y2O3), dysprosia (Dy2O3) and ytterbia (Yb2O3) 
(composition 2). All the dopants were chosen on the basis of their 
radius according to the Hume Rothery rule [24]. To achieve maximum 
solid solubility, the atomic radii of the solute and solvent atoms must 
differ by no more than 15%. The maximum Electrical conductivities 
were 0.18 and 0.16 S/cm for compositions 1 and 2, respectively, with 
the combined dopant concentration of 8.3 mol% at 1000°C [25]. 
Bending strength is another important factor to maintain mechanical 
integrity and to withstand thermal stress with other components of the 
cell. It was about 100 MPa for those compositions, which does 
not suffice the need at the operating temperature of SOFC. On the 
other hand, yittria stabilized zirconia is a promising candidate, in 
this regard too, with the bending strength of 400 MPa [26]. Thermal 
expansion is another factor to be considered. Zirconia stabilized with 8 
mol% yttria exhibits a very consistent coefficient of thermal expansion 
of 10.5x10-6/K from 25°C to 1000°C [27]. 

Ceria-based oxide ion conductors 

Ceria-based materials have found potential application as 
electrolyte materials for the intermediate temperature (500-750°C) 
solid oxide fuel cell (ITSOFC) [28]. ITSOFC is favourable compared 
to high temperature SOFC. Several advantages are obtained with the 
reduction in operating temperature; they are: less prone to thermal 
and mechanical stress, wide range of materials selection, short start-
up time, easy maintenance, better thermal management, much more 
economic, reduced effect of thermally activated processes [29]. A 
descriptive study was carried out on a series of ceria compositions; 
CaO, SrO, MgO and BaO have been used as dopants [30]. The result 
shows that CaO and SrO enhances electrical conductivity to a great 
extent but MgO and BaO do not enhance so far. Literature reported 
the effects of rare earth oxides (such as Sm2O3, Gd2O3 and Y2O3) as 
dopant in ceria on electrical conductivity [30]. The observation led 
to the conclusions that doping with Sm3+ among rare earth oxides and 
Ca2+ among alkaline earth oxides produces maximum conductivity. 
The problems associated with ceria based materials are that they  
are prone to reduction at low oxygen partial pressure, which is prevalent 
on the anode side of SOFC, that leads to electronic conductivity [28] and 
possible large mechanical disintegration under large oxygen chemical 
potential gradients typical of SOFC operation [31,32]. This problem 
can be solved by decreasing operating temperature to below 650° 
to 700°C. Enumerable work has been carried out by different research 
groups to get rid of this problem. But there was no solution without 
yittria stabilized zirconia. Ceria based materials are mechanically 
very weak. Yahiro et al and Mehta et al deposited a thin film of yittria 
stabilized zirconia (YSZ) on ceria-based materials on anode side to 
suppress electronic conduction [33,34]. But the problem occurs with 
the operating temperature; ceria based electrolytes are used in SOFC 

Dopant Mol% Resistivity 
at 800 °C (Ωcm)

Resistivity at 1000 °C 
(Ωcm)

CaO 15 250 50
YO1.5 20 45 10

(YO1.5)0.08(YbO1.5)0.08 16 20 5

Table 1: Resistivity data of doped ZrO2.
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operated at 550°C and lower whereas YSZ thin film can work only 
at higher temperature to suppress electronic conduction [34]. So the 
problem has to be addressed further to have proper solution. Another 
solution is that doped ceria can be used with doped lanthanum gallate 
in multilayer cells [31,32]. But this multilayer electrolyte shows very poor 
performance due to formation of new layer caused by  inter-diffusion 
at the boundary of YSZ and ceria, which, in turn, causes low ionic   
conduction [35]. This layer may introduce thermal expansion 
mismatch at the operating temperature, resulting into microcracks 
[33,36]. At reduced operating temperature, the overall cell voltage 
will be lower due to critical polarization resistance of electrodes, 
rendering poor cell performance, non-uniform current and/or 
distribution of reaction rate throughout the electrolytes may cause 
local heating which can lead irreversible decomposition of ceria based 
materials [37]. 

Perovskite-structured oxide ion conductors 

According to the literature reports, some doped perovskite 
(ABO3) materials can serve as solid electrolyte materials for SOFC. 
Al or Mg doped calcium titanate (CaTiO3) exhibits highest oxide ion 
conductivity [38]. CaTi0.95Mg0.05O3 and Ca-doped Al2O3 show very high 
transport number (0.9) with no electronic conductivity in reducing 
atmospheres. However, they are not suitable for SOFC application 
due to their lower oxide ion conductivity than that shown by YSZ. This 
lower conductivity results from limited solid solubility of dopants in 
these oxides less open crystal structure than fluorite structured YSZ 
[39,40]. But surprisingly lanthanum strontium gallium magnesium 
oxide (La0.9Sr0.1Ga0.8Mg0.2O3) showed oxide ion conductivity higher than 
those of ZrO2-based and CeO2-based ion conductors and lower than 
that of Bi2O3-based ion conductors [39,40]. This material exhibited 
oxide ion conduction with limited whole and electronic conduction 
upto 10-23 atm oxygen partial pressure [41]. But this material does 
not possess good mechanical strength [42,43]. Bending strengths of 
La0.9Sr0.1Ga0.8Mg0.2O3 at room temperature and 900°C were 162 ± 14 
and 55 ± 11 MPa, respectively, which is not suitable for SOFC 
application [41]. This material does not show good creep behavior [44]. 
It showed thermal expansion coefficient of 11.5 x 10-6/K down from 
the room temperature to 1000°C, which is compatible with other 
components of SOFC [45]. 

Brownmillerite-structured oxide ion conductors 

This material has a general formula of A2B´B”O5 or A2B2O5. This 
is a perovskite structured material with one sixth of oxygen sites 
vacant. The most popular material in this group for SOFC application 
is Ba2Ln2O5 [35]. Brownmillerites exhibit exhibition conductivity higher 
than that of fluorite structured oxides [46]. Hole is the major carrier in 
electrical conduction beyond oxygen partial pressure of 10-3 atm. 
This material shows a large increase in conductivity at around 
900°C. This may be attributed to the transition from oxygen 
vacancy ordered brownmillerite to oxygen disordered pseudo-
perovskite structure. This material also shows proton conduction 
below the temperature of 400°C. Ba2Ln2O5.H2O is responsible for 
proton conduction [47,48]. 

Layered aurivillius-structured compounds 

Aurivillius compound is a complex oxide system of bismuth and 
vanadium; the formula of this layer structure is Bi4V2O11-δ [49]. This 
material shows phase conversion within three phases of α, β and γ over 
a wide temperature range. This type of material shows conductivity 
decay upon prolonged heating due to phase separation [50]. This oxide 
has been modified with the addition of rare earth oxides ( L2O3, where 
L includes Gd, Er, Dy, Y, Ho, Nd, Sm) [51]. The doped BIMEVOX 
(BI-Bismuth, ME- dopant metal, V- vanadium, OX-oxygen) gets 
reduced at low oxygen partial pressure and thereby producing metallic 
bismuth [52,53] in the following manner: 

(Bi2O3)1-x(Me2O3)x → (Bi2O3)1-x-α(Me2O3)x + 2αBi + (3α/2)O2 

Therefore, this material does not find application as electrolyte of 
SOFC.

LAMOX Family 
La2Mo2O9 (LAMOX) is a fast oxygen ion conductor compared 

to yittria stabilized zirconia materials (YSZ). LAMOX undergoes a 
reversible phase transition from the nonconductive monoclinic 
form (α) to the highly conductive cubic (β) form at around 580°C. 
This phase transition is the primary impediment for this material to 
find application as a component of SOFC. This material may undergo 
mechanical breakdown due to repeated cycle of phase transition 
[54,55]. Praseodymium (Pr) has been used as dopant in LAMOX 
to suppress its phase transformation, but no suppression occurred; 
Pr significantly lowers down the phase transition temperature [55]. 
La2Mo2O9 exhibits high coefficient of thermal expansion of  16.8x10-6 
and 13.5x10-6/K at low temperature phase and high temperature phase 
[56], respectively, which are not compatible with those of other 
components [27]. Its ionic conductivity is 2.6 x 10-2 S/cm, which is 
higher than YSZ materials [57,58]. Molybdenum is prone to reduction 
in low oxygen pressure [57]. This is the drawback of this material. 
The ionic transference number of La2Mo2O9 is high (around 0.98) 
in moderate reducing atmosphere, but it showed phase conversion at 
oxygen partial pressure of 10-8 Pa at 800°C [59]. 

Apatite oxides 

Apatite structured oxides, such as La10Si6O27, La10Ge6O27, etc., 
exhibits oxide ion conductivity [60,61]. It shows consistent oxide ion 
conductivity over a wide range of oxygen partial pressure from 1 to 
10-21 atm. These apatite’s exhibit hexagonal symmetry with very open 
structure which may help in oxide ion conduction while its activation 
energy is very low. This is the reason for investigating this material. 
Conductivity of this oxide is not higher than that of 8 mol% YSZ at 
the temperature higher than 600°C [60]; this may be the reason for slow 
research activity on this materials. 

La3MMo2O12 family 

This is very recent invention based on LAMOX family [62,54]. 
General formula of this material is La3MMo2O12, where M indicates 
In, Ga and Al. La3GaMo2O12 showed highest conductivity among 
the three different compositions. Their conductivities at 800°C are 
summarized in Table 2 [63]. The conductivity value of La3GaMo2O12 
is higher than that of 8 mol% YSZ [58]. The main drawback of LAMOX 
material was its very high CTE which is not suitable for SOFC. 
LAMOX doped with In showed the lowest CTE of average 14.7x10-

6/K and 12.7x10-6/K for high temperature and low temperature 

Composition Conductivity(S/cm)
La3GaMo2O12 3.6 x 10-2

La3AlMo2O12 2.4 x 10-2

La3InMo2O12 3.6 x 10-3

Table 2: Conductivity Data of La2MMo2O12 Family.
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phases, respectively [56] and higher than that of 8 mol% YSZ [27]. 
All the three materials (doped with In, Ga and Al) showed phase 
transformation at high temperatures leading to change in unit cell 
volume [63] which is detrimental for their use with other components 
of SOFC at the temperature of its operation (Figure 1). 

La2W2O9 family 

LAMOX family suffers from phase transition especially due to 
molybdenum (Mo) [57]; it has been tried to overcome by introducing 
tungsten(W) in place of Mo. Reducibility of W is less compared to 
that of Mo [64,65]. W was chosen in place of Mo on the basis of their 
similar ionic radii (0.59Å for Mo6+ and 0.6Å for W6+) anticipating that 
80% solid solubility can be achieved [66]. However, triclinic La2W2O9 
(room temperature phase) undergoes reversible phase transition 
at 1070°C [67]; therefore, the problem has not been solved with 
this replacement. However, the problem was tried to be solved 
with the partial substitution of La and W by Ba and V [68]. The 
maximum conductivity of 0.011 and 0.006 S/cm were obtained for Ba0.2 
substitution in place of La and for V0.3 substitution in place of W 
while it is 0.032 S/cm for LAMOX at 650°C [69]. Therefore, the result 
obtained was not so satisfactory.

Proton conducting oxides 

Some perovskite oxides exhibit proton conduction in hydrogen 
containing environment at high temperature [70]. The primary 
compounds such as BaZrO3, BaCeO3, SrCeO3, SrZrO3 and CaZrO3, 
are not good conductor; they show good conduction property when 
doped with rare earth ions such as yittrium (Y) or ytterbium (Yb) 
due to the presence of electron hole. The reaction takes place in the 
following manner [35]: 

H2 + 2h. = 2H+ 

where h. symbolizes hole. 

SrCeO3  doped with Yb (5 mol%) was studied and the obtained 
conductivity was around 0.002 S/cm in a humidified atmosphere, which 
is far below the conductivity  of 8 mol% YSZ [70-72]. Proton conduction 
increases in the following manner: BaCeO3>SrCeO3>SrZrO3>CaZrO3. 
This trend gets reversed upto SrZrO3 when chemical compatibility comes 
into consideration. Other proton conducting materials are BaThO3 and 
BaTbO3 doped with gadolia [73,74], BaTh0.9Ga0.1O3, Sr2Gd2O5 and 

Sr2Dy2O5 [75]. Maximum proton conductivity obtained was 8.7x10-2 S/
cm at 550°C. The main advantage of this material is that fuel cell does 
not require water removing unit because proton conductor generate 
steam in oxidant electrode [3]. Chemical stability of the materials 
has to be improved. They disintegrate in carbon dioxide and moisture 
containing environment. Therefore, researchers are trying to make solid 
solution (as for example, BaZrO3- BaCeO3) to extract good properties 
of both the materials as well as to avoid their detrimental properties. 
However, these materials also have the problem of phase separation after 
a long term use. To address this problem, amount of dopant level is being 
tried to adjust. BaO evaporation at high temperature is another problem; 
this is dealt with reduction in sintering temperature. These materials 
are very hard to sinter, therefore high temperature is necessary. In these 
materials grain boundaries act as the trap for proton; therefore, reduction 
of grain boundaries is another technical aspects, which requires very high 
temperature. Therefore, the problems associated with these materials will 
take a long time to be properly solved.

Conclusion
Presently research work is being carried out for YSZ, doped CeO2, 

doped BaZrO3, BaCeO3 and doped BaZrO3- BaCeO3 solid solution. 
Researchers are putting their effort in developing thin electrolytes. They 
are developing many techniques like pulse laser deposition, chemical 
solution deposition technique, etc. for the ordered arrangement of 
electrolyte molecules in a thin layer without leaving any void in the layer 
to maintain gas tightness.
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