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Introduction 
Despite the recent advancements in therapeutics and counteragents, 

mortality and morbidity from inhalation injury remain high [1,2]. 
Inhalation of toxins often affects multiple airway sites at different times, 
making diagnosis and prediction of injuries challenging: it often results 
in a combination of 1) thermal damage in the upper airway, 2) chemical 
injury that affects both the upper and lower respiratory tract, and 3) 
systematic effects from toxins, such as CO, CN, and cyanide [3]. Heated 
air from fires can cause thermal injury to the upper airway, which leads 
to swelling and edema of the tongue, epiglottis, and aryepiglottic folds 
[4]. If significant thermal damage is suspected, continuous monitoring is 
required to assess the need for ventilation. Chemical irritants can affect 
airway at different levels depending on their chemical characteristics 
and water solubility, with smaller particles and less water-soluble gases 
generally affect the lower respiratory tract. Inhalation of chemical 
irritants often results in mucosa damage, leading to ciliastasis, epithelium 
denudation, sloughing, airway obstruction, and pulmonary edema [5,6]. 
The number of substances that can cause severe lung damage continues 
to expand in both occupational and domestic settings. Besides direct 
and immediate effects, in many cases, inhalation injury is accompanied 
by inflammatory responses that can prolong the ventilation period and 
increase the risk of acute respiratory distress syndrome. Therefore, 
accurate diagnosis and continuous monitoring of affected airway 
tissue are crucial. Monitoring of airway injuries has been challenging 
due to its anatomical location. Currently, the clinical diagnosis and 
monitoring of airway inhalation injury rely on subjective clinical exams 
and bronchoscopic findings. However, only the superficial tissue can be 
seen using a bronchoscope, and the measurements from clinical exams 
are subjective. Computerized tomographic (CT) scanning has recently 
been proposed for quantitative airway injury assessment [7]. A three-
dimensional reconstruction of the airway from a chest CT can provide 
information of airway narrowing [8]. However, the CT scan does not 
provide enough spatial resolution to identify early tissue damage, such 
as hyperemia, sloughing, necrosis, and inflammation, and thus, CT 
cannot provide an accurate assessment of inhalation injury by itself [9]. 
In addition, repeated CT measurement expose the patient to the risks 
of ionizing radiation. Ultrasound has been proposed as a non-invasive 
point-of-care imaging tool for assessment of upper airway health [10]. 
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Unlike CT and Magnetic resonance imaging (MRI), ultrasound imaging 
requires minimal training and is a rapid diagnostic tool that does not 
require sedation. It has been used to detect tracheal wall thickness of a 
patient with smoke inhalation injury, with accuracy comparable to those 
of CT [11,12]. However, ultrasound alone cannot provide an accurate 
diagnosis of inhalation injury due to its limited imaging area and 
relatively low spatial resolution. Most importantly, ultrasound must be 
performed in the contact mode in order to visualize structures below the 
airway surface, which is not practical in the larger airways. Currently, 
neither CT nor ultrasound imaging has the capability to resolve early 
changes in the mucosa layer due to chemical irritants and edema. 
Therefore, a medical imaging tool that can detect early signs of airway 
injuries as well as monitor the recovery process is required to improve 
patient outcome. 

Optical coherence tomography (OCT) provides non-invasive and 
real-time visualization of biological tissue 1-3 mm beneath the surface 
with virtually histologic-level resolution. OCT has previously been used 
in ophthalmology, cardiology, and dermatology to improve patient 
outcome. Recent advancements in a high-speed swept-source laser 
allows 3D volumetric scanning of tissue in real-time during procedural 
settings [13]. Since the imaging part of OCT can be made with fiber 
optics, OCT can be made into miniature rigid or flexible endoscopic 
probes to visualize internal organs that were previously hard to reach, 
similar to fiber optic bronchoscopy. Endoscopic OCT has started to be 
utilized in humans in clinical settings to visualize the respiratory tract 
[14-16] and gastrointestinal tract [17,18].

While some previous studies discussed the development of 
endoscopic OCT techniques for airway and lung imaging, few studies 
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have focused on the assessment and monitoring of inhalation injury 
[19,20]. Therefore, this review focuses on the recent development and 
applications of endoscopic airway OCT for assessing inhalation injuries 
and discuss the potential use of OCT in diagnosis-specific assessment 
and treatment.

Development of Endoscopic OCT for airway imaging
Several studies have used endoscopic OCT to study airway diseases 

and disorders [14-16,21,22]. Endoscopic OCT commonly employs 
fiber optic-based imaging techniques that can be combined with other 
imaging modalities, such as bronchoscopy, to examine internal organs. 
Tearny et al., reported the first application of an endoscopic OCT study 
in an in vivo rabbit trachea using a Time-domain (TD) OCT system 
[23]. With the advancement of the high-speed sweeping laser, the 
imaging speed and sensitivity of endoscopic OCT has improved in 
recent years [14,16,24,25].

Early airway studies using TD OCT

In early studies, TD-OCT has been used to image the airway 
[23,26]. In TD-OCT, the optical path length of the reference arm in an 
interferometer is mechanically varied to get signals at different depths 
of the sample. Therefore, the imaging range of TD-OCT is determined 
by the moving range of the reference arm. The main limitation of TD-
OCT is the scanning speed. In the case of endoscopic imaging, slower 
scanning speed can result in motion artifact and lengthen diagnostic 
procedure time. To achieve real-time imaging with TD-OCT, several 
groups adopted a rapid scanning optical delay line in the reference arm 
to scan across the sample. In this setup, the group delay was changed 
rapidly by moving a mirror mounted on a galvanometer, allowing 500 
A-line scans per second with a 36 mm scanning distance [27]. However, 
there is a trade-off between the scanning speed and sensitivity in TD-
OCT so the fast scanning will result in lower signal-to-noise ratio.

Development of Fourier domain OCT for airway imaging

With the development of Fourier domain OCT (FD-OCT), the 
speed and sensitivity of endoscopic imaging have significantly improved. 
Since FD-OCT obtains depth information of the sample simultaneously 
through a wavelength-sweeping laser or a spectrometer and a broad-
band laser rather than mechanically scanning the reference arm, the 
imaging speed can be much faster than TD-OCT. However, the main 
drawback of FD-OCT is the finite imaging range. Typically imaging 
the entire airway lumen requires a 25 mm imaging range. Jun et al., 
overcame the short imaging range by implementing a phase modulator 

and effectively doubled the imaging range [28]. More recently, Jing et 
al. applied a vertical-cavity surface-emitting laser (VCSEL) based swept 
source laser and achieved long-range OCT imaging with much higher 
sensitivity by taking advantage of its narrow instantaneous pulse width 
of light source [14]. Super-high-speed endoscopic imaging using a 
Fourier domain mode lock laser has been demonstrated with an MHz 
scanning rate [24]. In addition to the speed, the axial resolution has 
been improved up to 1 um by using a broad bandwidth light source 
such as a supercontinuum [29,30].

Different types of endoscopic imaging probes for airway 
application

Most commonly used scanning schemes for endoscopic OCT 
imaging utilize proximal rotation or distal rotation driving mechanisms. 
The proximal rotational endoscopic probe utilizes a fiber optic rotary 
junction to drive the imaging probe externally. In addition to the 
flexible sheath that prevents contact of the probe with tissue, the entire 
probe is protected with a metal housing or a torque coil to reduce the 
friction during the high-speed rotation. For scanning large animals 
and the human airway, a GRIN lens-based flexible endoscopic probe 
is commonly used (Figure 1A). The distal end of the probe consists of 
a mirror, GRIN lens, and a spacer. The focusing distance of the probe 
can be adjusted based on the scanning site and the diameter of the 
airway. The probe diameter ranges from 2 mm to 0.9 mm. In some 
applications, even a smaller endoscopic probe is required, such as for 
imaging the respiratory tract of a small animal or terminal bronchus 
of a larger animal. In such cases, a Graded index (GRIN) fiber [31], a 
ball lens [32], or large core fibers [33,34] can be used instead of a lens 
to fabricate an endoscopic probe as small as an optical fiber, typically 
less than 250 um (Figure 1B). The fiber end is polished at a critical 
angle in order to reflect OCT light without a mirror. The advantages 
of the proximal rotational scheme are the simplicity of fabrication and 
the ability to be able to miniaturize the probe. However, the probe 
rotational speed is limited since the entire probe rotates, increasing the 
time to acquire the full 3D scanning image. In addition, bending the 
probe can cause Non-uniform rotational distortion (NURD). The distal 
rotational probe typically utilizes MEMS scanning mechanics (Figure 
1C) [14,35]. A miniature motor is placed at the distal portion of the 
probe next to the focusing lens. Since the moving unit is limited to the 
probe tip, the probe bending does not cause NURD and the rotation 
speed can be higher, making this method more suitable for high-speed 
scanning. However, the micromotor makes the probe size slightly larger 
than the proximal scanning probe. In addition, the electronic wire for 

 
Figure 1: Three types of endoscopic probes commonly used in airway imaging: (A) proximal rotational probe based on a GRIN lens, (B) proximal rotational probe 
based on an all-fiber optic design, and (C) distal rotational probe based on micro-motor. All endoscopic probes are protected with a disposable plastic catheter (dotted 
line) to prevent direct contact with tissue.
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controlling the motor will partially block the OCT light and cast a 
shadow to the OCT image.

OCT for Assessing Inhalation Airway Injury
OCT has been used in numerous inhalation injury studies to assess 

tissue damage and predict outcome from toxic gas exposure [36-39]. 
Epithelium and mucosa layer thickness are the main parameters that 
have been used to assess early tissue response to the inhaled substance. 
It was demonstrated that the mucosa thickness reflects the early changes 
in the tissue and OCT has a capability to assess those subtle changes 
whereas traditional diagnosis requires longer observation time [37]. 
In addition to the mucosa thickness, OCT has been used to quantify 
airway volume [33]. The degree of airway obstruction and edema can 
be correlated with the airway volume. Furthermore, temporal changes 
in the airway volume can be utilized to estimate airway compliance 
which relates to the mechanical properties [40-42]. In this section, 
we will summarize the previously conducted OCT studies related to 
inhalation injury.

Sulfured mustard

Sulfured mustard is a vesicant (blistering) agent and can cause 

significant tissue damage, leading to obstruction and edema. Hammer-
Wilson et al. first demonstrated the potential use of OCT in detecting 
tissue damage due to exposure to 2-chloro-ethyl-ethyl-sulfide, known as 
half mustard, using a hamster cheek model [43]. OCT was able to detect 
morphological changes in the mucosa and muscular layer that were not 
visible on gross visual examination such as bronchoscopy (Figure 2). 
Kreuter et al. then reported the changes in the airway epithelium and 
mucosa in vivo in a ventilated rabbit exposed to half mustard [44]. The 
endoscopic OCT probe was placed at the distal portion of the trachea. 
The changes in the epithelium were apparent within a few minutes after 
exposure in OCT images, and signs of epithelium detachment and 
haemorrhage continued to develop over the next few hours.

Methyl isocyanate (MIC)

MIC is an industrial by-product. Accidental release of MIC in 
Bhopal, India killed thousands of civilians, which is considered one of 
the worst industrial disasters in history [45]. Inhalation of the gas causes 
airway edema and epithelium delamination, leading to substantial 
airway obstruction. The mechanism of MIC has been studied in mice 
[46] and rats [47], but no effective rescue agents have been developed. 
Miao et al., first demonstrated that the degree of airway obstruction 

Figure 2: Changes in the tissue structure after exposure to different concentrations of Half mustard gas (HMG). Extensive tissue response, such as blistering, 
membrane opacity, and broken vessels, were observed in the HGM model (1: keratinized surface layer; 2: flat stratified squamous layer; 3: submucosa; 4: smooth 
muscle). Scale bar: 1mm. Reprinted with permission [43].
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can be quantified in a rat exposed to MIC using a miniature OCT 
endoscope [33]. Combined with automated segmentation technique 
based on graph theory, OCT provides capabilities for rapid assessment 
of airway structure, volume, site of maximum airway constriction, and 
aerodynamic characteristics (Figure 3).

Smoke inhalation injury

Smoke inhalation injury is the leading cause of death in fire 
victims. In modern burn care, diagnosis of inhalation injury has been 
a particularly challenging yet an important problem. Inhalation injury 
complicates the burn and increase mortality and morbidity for up to 
20% of burn patients [7]. Numerous studies have used endoscopic OCT 
in combination with a flexible bronchoscope to assess early changes in 
the tissue histopathology and predict the outcome [36-39,48]. Most of 
those studies focus on the quantification of mucosa and airway epithelial 
thickness after exposure to cold smoke. Brenner et al. reported that 
early tissue changes, such as hyperemia and edema, observed during 
in vivo OCT imaging were lost during the histological preparation, 
indicating the importance of a non-invasive, intra-operative imaging 
technique [38].

Characterization Techniques for Airway Injury and 
Recovery

Typical OCT imaging provides structural information of airway 
tissue with 3-10 um spatial resolution. To automate the analysis, post-

processing techniques have been developed for OCT airway images to 
identify and characterize different layers of tissue. Additionally, several 
techniques have been used to obtain functional information from OCT, 
such as airway compliance [41,42], birefringence property [49], and 
cilia beating frequency [50,51].

Automatic tissue identification and characterization

Automated segmentation and analysis algorithms have been 
developed by several groups to assist data interpretation for airway 
OCT. From airway OCT images, we can automatically obtain 
information of tissue layer thickness [52,53], mucus secretion [54], and 
airway dimension [33,55]. Li et al., proposed a robust segmentation 
algorithm based on graph theory to delineate boundaries between 
mucosa, submucosa, and cartilage and quantified airway thickness 
changes during smoke inhalation using a sheep model [52]. Increase 
in both mucosa and submucosa layer thicknesses were observed using 
automated analysis which matches well with manually segmented 
results (Figure 4). The algorithm can be extended to reconstruct 3D 
airway structure and create a virtual bronchoscopic view to visualize 
airway narrowing [55]. Using a similar graph theory-based algorithm, 
Miao et al., performed a 3D reconstruction of a rat airway exposed to 
MIC gas [33].

Compliance and birefringence measurement

There is a currently limited understanding of the kinetics of 

Figure 3: OCT images and 3D reconstruction of rat trachea exposed to MIC. OCT endoscopic images of (A) healthy rat airway and (B-C) MIC exposed airway. (D) 
Airway reconstruction of healthy rat and (E) MIC exposed rat. (F) A miniature fiber endoscopic probe with 0.4 mm diameter was designed for rat airway imaging. Scale 
bar: 0.5 mm. Reprinted with permission from ref. [33].
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airway repair process after inhalation injury. The airway may not be 
restored to the original structure and function after recovering from 
inhalation injury [56]. Studies show that patients exposed to chlorine 
gas continued to experience symptoms, such as fibrosis, hyperplasia, 
airway hyper responsiveness, after recovery [57,58]. Therefore, a non-
invasive visualization tool is needed to provide information on tissue 
components, such as elastin, collagen content, and smooth muscle 
thickness during the repair process. A couple of studies monitored 
mechanical properties and smooth muscle thickness in the airway 
thorough endoscopic OCT. Robertson et al., first reported compliance 
measurement of in vivo rabbit trachea using the airway deformation 
induced by the tidal breathing [40]. Oldenburg reported in vivo 
compliance measurement of porcine airway using a long-range OCT 
imaging system [41,42]. Since compliance is directly linked to elastin 
and collagen contents in the airway, the changes in the compliance can 
indicate abnormalities such as fibrosis and airway remodelling. Adams 
et al., developed an approach to visualize endoscopic smooth muscle 
in the airway using polarization sensitive OCT [49]. Polarization-
sensitive OCT can detect birefringence signals coming from tissue 
with an ordered structure, such as smooth muscle fiber bundles and 
collagen. They observed an increase in smooth muscle thickness in an 
asthma patient which can be assessed during bronchial thermoplasty 
procedures.

Ciliary function

In inhalation injury, epithelium and mucociliary cells are damaged 
by toxins. This leads to disturbed mucociliary transportation which 
prevents the clearance of mucus and bacteria. Currently, real-time 
visualization of cilia motion cannot be achieved due to the sensitivity 
and spatial resolution required to visualize the cilia; the size of the 

Figure 4: Automated tissue segmentation of sheep airway. (A)  Mucosa and submucosa layer in airway can be delineated after smoke inhalation [52]. (B) 3D 
reconstruction of airway lumen structure and tissue layer thickness. Reprinted with permission from ref. [55].

bronchotracheal cilia layer is 6-7 um [59]. Liu et al., developed an ultra-
high-resolution OCT system (“micro-OCT”) with 1 um axial resolution 
using a supercontinuum light source to visualize airway epithelial cell 
cilia [50]. Using a “micro-OCT system”, they were able to capture the 
ciliary stroke pattern for the first time. However, the supercontinuum 
light source is bulky and expensive compared to the light source used in 
standard swept-source OCT and may not be suitable for clinical settings 
at this time. Taking advantage of the nanometer sensitivity of Doppler 
OCT, Jing et al., has quantified the cilia beating frequency and visualize 
the temporal beating pattern of ciliary motion in a rabbit airway using a 
swept source laser [51]. Doppler OCT is a functional extension of OCT 
imaging that is capable of measuring displacements or movements 
in the sample with nanometer sensitivity. An increase in the beating 
frequency was observed as ambient temperature rises (Figure 5).

Conclusion 
Accurate assessment of the airway tissue state is important for 

improving the survival rate from inhalation injury and ensuring 
proper tissue repair. Benefiting from non-invasive, high-resolution, 
and high-speed imaging capability, endoscopic OCT can provide a 
rapid and quantitative assessment of tissue inflammation, hyperemia, 
and sloughing, and can be used to reconstruct a three-dimensional 
virtual bronchoscopy image to identify airway narrowing. In addition 
to structural information, compliance and birefringence signals 
from smooth muscle can provide important information during the 
healing process. Ciliary transportation is an active area of research, 
and endoscopic OCT has spatial resolution and sensitivity to visualize 
ciliary motion in vivo. In addition, endoscopic OCT is well suited for 
multimodal imaging since it can be easily incorporated into a working 
channel of a clinical flexible bronchoscope. In future studies, OCT 
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Figure 5: Visualization of cilia beating frequency at different temperatures using Doppler OCT. Cilia beats faster as the temperature increases. Reprinted with 
permission from ref. [51].

combined with fluorescence imaging, in an endoscopic probe will be 
capable of providing not only structural information but also molecular 
information. Endoscopic OCT has great potential for diagnosis of 
inhalation injury and monitoring the recovery process.
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