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Abstract

are also reviewed.

Enterococcus faecalis is a member of the normal microbiota; however, multidrug-resistant strains are important
causes of nosocomial infections. Their ability to cause serious infections has been linked to variable traits that enhance
their virulence. In the oral cavity, E. faecalis is commonly detected from root canals of teeth with post-treatment apical
periodontitis or refractory/advanced marginal periodontitis. Isolates from oral infections have a genetic and virulence
profile different from hospital-derived isolates. This Review discusses the occurrence of E. faecalis in oral infections,
and the virulence factors that may contribute to the pathogenesis of post-treatment apical and marginal periodontitis.
The susceptibility patterns of oral E. faecalis to various antibiotics of potential use in periodontal and endodontic therapy
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Introduction

Enterococcus faecalis is a Gram-positive, facultative anaerobic
coccus that can survive under harsh conditions, including high
salt concentrations and temperatures > 45°C. It is a member of the
mammalian gastrointestinal microbiota but multidrug-resistant
strains have been considered relevant causes of hospital-acquired and
community related infections.

In the human oral cavity, E. faecalis has been frequently detected
from patients with post-treatment apical periodontitis [1-17] or
refractory marginal periodontitis [18-24]. Isolates from oral infections
differ from clusters of hospital-derived isolates, as they do not present
many mobile genetic elements. However, they usually carry virulence
factors related to adhesion and biofilm formation, which may account
for the colonization of different oral sites [15,17,25-29]. Moreover,
oral strains may also carry certain antibiotic resistance determinants
that have the potential to be transferred to other pathogenic bacteria
in biofilm communities [23,26,28-33]. In this review, we discuss the
occurrence, virulence factors and antimicrobial resistance of E. faecalis
in oral infections.

Virulence factors of E. faecalis isolates from oral infections

The ability of E. faecalis to cause infections has been linked to
variable traits that enhance its virulence. To date, only limited data are
available on the virulence factors of oral enterococci in comparison
with those of medical strains. Recently, it has been shown that E. faecalis
isolates from endodontic infections have a genetic and virulence profile
different from pathogenic clusters of hospitalized patients’ isolates [25].
In the latter, the genetic content of the E. faecalis pathogenicity island
(PAI) was enriched among hospital-derived isolates and consisted of
virulence determinants that are rare in endodontic isolates, including
¢yl (cytolysin production), gls24-like (general stress protein), nuc-
1 (Staphylococcus homologue nuclease), and psaA (Streptococcus
pneumoniae homologue metal-binding protein). In contrast, esp
(enterococci surface protein) was a PAI gene frequently detected in
both endodontic and medical isolates, which suggests that it may be
relevant to E. faecalis adaptation in infected root canals [25].

Enterococcal surface protein (ESP) was highly associated with
infection-derived isolates of E. faecium and E. faecalis [34]. Studies
have shown that esp gene was detected in most strains isolated from
endodontic [25,27], periodontal [28] and oral infections [29]. Since ESP
has been associated to higher biofilm production of the strains, the high

prevalence of esp within oral isolates suggests that this surface protein
may be a potential virulence trait that participates in colonization of
different niches of the oral cavity.

Several studies have attempted to identify additional genetic
factors which influence biofilm formation in E. faecalis, including
gelE (secretory metalloprotease gelatinase E) gene [34]. It has been
shown a relationship of biofilm formation and gelE gene expression
in Enterococcus faecalis recovered from root canal infections [17]. The
production of gelatinase, a metalloprotease able to degrade collagen
and fibrinogen, have been detected in 50% of E. faecalis isolates from
endodontic [27] and periodontal [28] infections, which suggests a role
for this factor in the pathogenesis of apical and marginal periodontitis.

Similarly, genes encoding adherence factors such as collagen
adhesion protein (Ace), aggregation substance proteins (Agg), and
antigen A (EfaA) have been frequently detected in isolates from both
endodontic [15,26,27] and periodontal [28] infections. In this context,
the expression of adhesion factors, such as Ace and Agg, may facilitate
the colonization of dental root surfaces, since these factors can increase
adhesion to collagen.

Capsule production is also an important mechanism of E. faecalis to
circumvent the host’s innate immune response and establish infection.
The presence of the capsule has been associated with the pathogenic
lineages of E. faecalis isolated from hospitalized patients [35]. In
endodontic infections, almost 40% of E. faecalis isolates from canals
of root-filled teeth with apical periodontitis has been associated with
capsule expression, which may account for their increased pathogenic
potential [25,36].

Taken together, the latter studies have shown that most oral E.
faecalis possess virulence factors related to adhesion and biofilm
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formation. Moreover, some strains can also produce an anti-phagocytic
capsule that may help to evade the immune system and sustain
successful long-term infection. In heavily infected sites, these virulence
factors may contribute to the pathogenesis of post-treatment apical and
marginal periodontitis.

Occurrence of E. faecalis in oral infections

E. faecalis in post-treatment apical periodontitis: Post-treatment
apical periodontitis is an inflammatory disease of apical tissues that
persists or develops after endodontic treatment as a consequence of
persistent or secondary intra-radicular infection. In these cases, E.
faecalis has been the most frequently detected species [1-17] (Table 1).
Since this species is more prevalent in persistent/secondary endodontic
infections than in primary infections [7,12,13], it has been suggested
that E. faecalis may play a role in the etiology of post-treatment apical
periodontitis. As shown in Table 1, there is a wide variability in the
reported prevalence of E. faecalis in persistent/secondary endodontic
infections. The differences among studies could be explained by factors
such as the sensitivity of the microbiological method, diagnosis criteria
in patient selection, geographic location, and sample size.

Target directed molecular methods usually exhibit greater
sensitivity for E. faecalis detection from root canal samples than
culture based methods. Moreover, molecular methods can detect
this bacterium in the viable but non-culturable (VBNC) state. By
using reverse Transcriptase-PCR (RT-PCR), a RNA- based molecular
method, VBNC E. faecalis could be clinically detected in root canal
samples which were negative by culture [13]. Thus, several studies
reported an increased sensitivity of molecular methods over culture for
detecting E. faecalis in endodontic infections [8,10,12].

Using culture analyses, its prevalence ranged from 20% to 70% of
root-filled canals with detecTable bacteria [1-4,15-17,37-40]. However,
one study failed to detect E faecalis in cases of post-treatment apical
periodontitis using culture assays [41]. Species-specific polymerase
chain reaction (PCR) assays have revealed a higher prevalence of E.
faecalis than culture-based studies. Apart from the findings of two
studies [42,43], E. faecalis was the most prevalent species detected
in root-filled teeth with apical periodontitis by standard PCR, with a
prevalence ranging from 47% to 78% of the cases [5-11]. The use of
more sensitive molecular methods like quantitative polymerase chain
reaction (QPCR) indicated that this species was present in up to 89.6%
of the root-filled canals [12].

Although E. faecalis is considered one of the most prevalent species
in root-filled canals with apical periodontitis, it is usually not the main
component of the mixed infections [44]. Moreover, studies using non-
target molecular methods, such as pyrosequencing or 16S rRNA cloning
and sequencing, have revealed a high degree of microbial diversity in
root-filled teeth with apical periodontitis, and new candidate pathogens
associated with persistent/secondary endodontic infections have been
suggested [45-50].

Besides the microbiological methods, the divergence of the
findings regarding the prevalence of E. faecalis in root canal infections
may be also dependent on the patient selection. Usually, studies that
have included only restored teeth [9,13,37,38,44] have shown lower
prevalence of E. faecalis in root-filled canals than those that have also
included non-restored teeth, considering the same detection method
[4,10,11] (Table 1). Therefore, the presence of coronal leakage by
defective coronal restorations, old temporary restorative materials,
or non-restored teeth may have influenced the microbial findings of
the latter studies [4,10,11]. These findings support the hypothesis that

E. faecalis may enter the root-filled canal via coronal leakage during
or after root-canal treatment as secondary invaders [51]. However,
as many studies did not mention the quality of restoration, it is not
possible to determine whether E. faecalis positive samples resulted from
its persistence to prior root-canal treatment (persistent infections) or
were originated after root-canal treatment from invading E. faecalis
into the root-filling, via coronal leakage (secondary infections).

One possible source of E. faecalis is contamination of the unsealed
necrotic or root-filled canal by food-borne strains, which are usually
transient in the oral cavity but may become colonizers of the root
canal system [25,51]. It has been shown that E. faecalis was detected
more often in oral rinse samples from patients receiving endodontic
treatment than from dental students with no history of endodontic
treatment [52].

After root canal invasion, E. faecalis seems to fit to the ecological
condition of the root-filled canal being able to survive in an environment
with scant available nutrients [1]. Even in low levels, E. faecalis may
establish infections that are difficult to treat due its resistance to
disinfection procedures during endodontic re-treatment of root-filled
canals, especially when forming a biofilm [53].

faecalis in marginal periodontitis: Periodontitis is an
inflammatory disease characterized by the destruction of connective
tissues and alveolar bone, in response to the subgingival biofilm. The
microbial shift from a healthy periodontium to chronic periodontitis
is characterized by increased proportions of Gram-negative anaerobic
rods and spirochetes, including the recognized periodontopathogenic
species Porphyromonas gingivalis, Tannerella forsythia and Treponema
denticola, and a decrease in the proportion of beneficial species
belonging to the genus Actinonomyces and Streptococcus. Although E.
faecalis is not considered a periodontopathogen, this specie has been
more frequently detected in subgingival samples from patients with
periodontitis than from periodontally health subjects, suggesting that
the local conditions in periodontitis may favor its colonization [18-24].

The prevalence of E. faecalis in sub-gingival samples of periodontitis
patients ranges from as little as 1% to almost 50%, depending on the
microbiological method used in the studies [18,19,21-23]. Culture-
based studies have reported a low rate of E. faecalis isolated from
periodontitis, with prevalence ranging from 1% to 5% [18,23]. In
contrast, a PCR-based study has showed that approximately 48% of
periodontitis patients carried E. faecalis in subgingival sites [21].

The frequency of E. faecalis in patients with periodontitis may also
be influenced by the severity and type of periodontitis. E. faecalis was
detected in subgingival samples of 20.6% periodontitis patients, mostly
from sites with probing depths >6 mm (57%), indicating its association
with severe destruction [24]. Moreover, E. faecalis was detected in
21.4% of patients with refractory periodontitis (patients that failed to
respond to the periodontal treatment) [19].

Similarly, systemic health conditions of the patients may also affect
the detection rate of E. faecalis in supra- and sub-gingival biofilm
[25,54]. E. faecalis was detected in higher prevalence in dental biofilm
of hemodialysis patients when compared to the healthy group [54].
Furthermore, a higher prevalence of E. faecalis has been reported in
patients positive for human immunodeficiency virus (HIV) infection
when compared to HIV-seronegative subjects [22]. Other data
confirmed that E. faecalis is frequently associated with necrotizing
gingival lesions in the HIV-infected patients [55].

The presence of E. faecalis in periodontitis lesions may have an
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% of canals with E. No. of canals

Detection Method faecalis® Country analyzed
Culture

Sundqvist et al. [1] 38 Sweden 54
Molander et al. [2] 47 Sweden 100
Peciuliene et al. [3] 70 Lithuania 25
Cheung & Ho[41] ND China 24
Hancock et al. [37] 30 USA 54
Pinheiro et al. [4] 53 Brazil 60
Schirrmeister et al. [38] 30 Germany 20
Vidana et al. [39] 22 Sweden 50
Zhu et al. [15] 40.6 China 32
Wang et al. [17] 39.2 China 135
Wang et al. [16] 38 China 54
Endo et al. [40] 20 Brazil 15
PCR

Récgas et al. [6] 64 South Korea 14
Récas et al.[7] 67 Brazil 30
Siqueira & Régas [5] 77 Brazil 22
Fouad et al. [42] 22 USA 40
Kaufman et al. [43] 129 USA 58
Zoletti et al. [8] 78 Brazil 23
Gomes et al. [10] 76 Brazil 50
Gomes et al. [11] 77.8 Brazil 45
Rogas et al. [9] 47 Germany 17
Real-Time PCR (qPCR)

Sedgley et al. [12] 89.6 Sweden 48
Williams et al. [13] 43 USA 14
Blome et al. [11] 10 Germany 20
Ozbek et al. [14] 74.4 Turkey 43
Récas &Siqueira [47] 38 Brazil 42
Checkerboard

Rogas & Siqueira [9] 43 Brazil 7
Murad et al. [52] 28 Brazil 36
16S rRNA Cloning

Rolph et al. [45] ND UK 5
Sakamoto et al. [46] 22 Brazil 9
Zhang et al. [47] 33 China 15
Anderson et al. [48] ND Germany 7°
Pyrosequencing

Hong et al. [50] ND SouthKorea 8
Anderson et al. [49] 17.5 Sudan 50

Table 1: Prevalence of E. faecalis in Root-Filled Canals with Apical Periodontitis
Detected by Different Different Microbial Methods

ND: not detected or detected as low abundant microorganism (< 1%).
aPercent of canals with bacteria.

bStudies that have as inclusion criteria: restored teeth or no direct exposure to the
oral cavity.

°Studies that have used more than one technique to detect E. faecalis. Results of
the most sensitive technique were reported here.

9Percent of teeth with and without apical periodontitis.
eNumber of positive samples using the 16S rRNA cloning technique.

impact on the patient’s response to periodontal therapy. Since E.
faecalis may be more resistant to antimicrobial chemotherapy and
mechanical debridement, its presence may increase the probability of
treatment failure [33].

Antibiotic resistances and determinants of E. faecalis isolates
from oral infections

E. faecalis possess intrinsic mechanisms of resistance to several

antimicrobial agents and additional resistance may also be conferred
by acquisition of genetic determinants by horizontal transfer [34,35].
In this review, we discuss susceptibility patterns of oral E. faecalis to
various antibiotics of potential use in periodontal and endodontic
therapy. For a more detailed discussion on the mechanisms of
antimicrobial resistances and their dissemination by the mobile genetic
elements in E. faecalis, the reader is directed to other reviews [34,56].

Penicillins are the most frequently used antimicrobial agents
in dentistry. Important classes of penicillins of potential use in
odontogenic infections include amoxicillin and its association with
beta-lactamase inhibitors, such as clavulanate. The development of
enterococcal resistance to beta-lactams can be mediated by alterations
in the expression or binding affinities of penicillin-binding proteins.
Additionally, resistance has been associated with the production of
beta-lactamases. In this context, in vitro antibiotic susceptibility studies
have shown that oral E. faecalis hardly ever produced beta-lactamase
enzymes. Moreover, it has been reported that amoxicillin or ampicillin
resistances are rare in E. faecalis isolates from endodontic [26,30,31],
periodontal [23,28,32,33] and deep oral infections [29].

In penicillin allergy subjects, clindamycin is usually the alternative
drug for severe oral infections. However, since E. faecalis has intrinsic
resistance to clindamycin, this drug is not clinically effective for
enterococcal infections. This finding was confirmed by in vitro study
testing clindamycin against oral E. faecalis isolates [29].

Macrolides are also alternative regimens recommended for
dental procedures when patients are allergic to penicillin. However,
erythromycin seems to be of limited value against oral enterococci
[26,30,31,32,52]. Recently, Rams et al. [33] have shown that only
19% of periodontal E. faecalis clinical isolates were susceptible to
erythromycin, and most of the isolates (55%) showed an intermediate
pattern. These findings are similar to previous evaluations of endodontic
E. faecalis strains [26,30,31,52]. Moreover, the genetic determinant of
macrolide resistance (ermB) has been detected in approximately 60% of
endodontic E. faecalis isolates [25].

Tetracyclines are broad-spectrum antibiotics, but bacterial
resistance has reduced their clinical usefulness in oral infections. This
antibiotic has exerted poor in vitro activity against periodontal E.
faecalis, and tetracycline resistance was detected in over 50% of the E.
faecalis periodontal isolates [23,28,32,33]. Moreover, a high prevalence
of the genetic determinant of tetracycline resistance (tetM) has been
recently detected in endodontic isolates [25]. Interestingly, in the latter
study, approximately 50% isolates of endodontic origin carried both
the ermB and tetM genes. The occurrence of multiple resistances to
erythromycin and tetracycline is probably associated with the presence
of conjugative transposons Tn916 family-Tn545, which carry ermB
and tetM genes. It has been suggested that this mobile genetic element
may have contributed to the dissemination of erythromycin and
tetracycline resistance within the oral microbiota [23].

In summary, clinical isolates of E. faecalis recovered from root canal
and periodontal infections can demonstrate antimicrobial resistance to
conventional treatment regimens recommended for dental procedures,
especially to tetracycline and erythromycin. On the other hand, studies
have shown that the oral isolates are susceptible to antibiotics used to
treat serious infections of hospitalized patients, such as vancomycin.
Likewise, high-level gentamicin resistance was rarely found in oral
isolates [25,28]. Therefore, oral E. faecalis might represent a reservoir
of resistance to tetracycline and erythromycin, but not to vancomycin
and gentamicin.
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Concluding Remarks

The oral cavity may serve as a reservoir for bacterial pathogens
of medical importance such as enterococci in systemically healthy or
diseased subjects. Oral E. faecalis possess virulence factors that may
contribute to the pathogenesis of apical or marginal periodontitis.
Differing from nosocomial infections isolates, usually oral E. faecalis
do not carry multiple antimicrobial resistance determinants. However,
tetracycline and erythromycin resistance genes have been frequently
detected in isolates from root canal and periodontal infections, and E.
faecalis selection is expected in oral sites after their usage.

Recent studies have shown that there is no specific virulent cluster
associated with oral diseases, but the oral E. faecalis usually carry genes
that encode surface proteins related to adhesion and biofilm formation.
Apical and marginal periodontitis are biofilm-induced diseases, thus
their treatment is mainly the mechanical debridement concurrent with
chemical agents for disinfection. The biofilm organization and/or its
inaccessibility, associated with the high fitness of E. faecalis to stressful
conditions such as low nutrient sources and use of chemical agents, may
result in bacterial persistence in the root canals or subgingival biofilm
after endodontic or periodontal treatment, respectively. These findings
may explain the high detection frequency of E. faecalis in cases that do
not properly respond to either endodontic or periodontal treatment,
and additional strategies may be needed for a successful treatment in
these E. faecalis infected oral sites.
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