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Abstract

In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for
40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates
within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses
distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope
(env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+
subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env
evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor
dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within
the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent
features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and
neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of
neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in
the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical
challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection.
Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should
be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent
viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in
the setting of HAND disease progression and on the impact of cART on the dynamics of viral evolution.
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Introduction
In the United States (US) there are an estimated 1.2 million people

infected with the human immunodeficiency virus, type 1 (HIV-1)
(CDC Report, 2014). Approximately 40 to 56% of HIV+ individuals in
the US also suffer from neurological and neurocognitive morbidities,
collectively known as HIV-associated neurocognitive disorders
(HAND) [1,2]. Fortunately, new antiretroviral regimes reduced AIDS-
related mortality [3] and mitigate the most severe neurological
complications [4]. However, the milder forms of HAND remain
prevalent among subjects, despite the use of combination antiretroviral
therapy (cART) [2]. In the context of HAND, HIV-1 envelope (env)
gene diversity is of particular interest because of the ability of this kind
of diversity to provide the infecting virus with a greater capacity to
persistently burden the central nervous system (CNS). In this review
we discuss relevant literature which describes the HIV-1 env gene
evolution and how that evolution affects the course of HIV-related
neuropathology.

HIV-1 Associated Neurocognitive Disorders (HAND)
and Disease Severity

HAND comprises an array of sub-syndromic neurocognitive
abnormalities which are further classified based on the extent of
disease severity [5]. HIV-associated dementia (HAD) is the most
severe form and is characterized by overt symptoms of dementia,

behavioral dysfunction, memory loss, and reduced overall
neurocognitive performance [5]. For the mild cognitive/motor
disorders (MCMD), the symptomatic features are impaired behavioral
and cognitive functions, slow movements, motor incoordination,
personality changes, and mild abnormal memory [5]. MCMD has a
prevalence of 12%, whereas the prevalence of HAD is 2%, being the
less common diagnosis [1]. The diagnosis criteria from the American
Academy of Neurology (AAN) were modified to include the category
of asymptomatic neurocognitive impairment (ANI) [5]. Even though
ANI is the mildest manifestation of HAND, it is currently the most
prevalent and accounts for 33% of the individuals diagnosed with
HAND [2]. The clinical relevance for ANI patients is that subjects are 3
times more prone towards symptomatic decline than are those without
any level of neurocognitive impairment [6].

The neuropathological etiologies of HAND development include
marked neuronal loss, altered metabolic and neurotransmitter balance,
and failure of immune responses [7-10]. The molecular mechanisms
and crucial events of the host responses that can trigger the
development of the neuropathological features of HAND have been
reviewed elsewhere [7,8]. HIV-1 primarily infects CD4+ cells [11,12].
HIV-1 migrates into and invades the CNS via HIV-infected circulating
peripheral immune cells (including monocytes and T-cells) [13]. The
pattern of viral trafficking suggests that HIV-1 crosses the blood–brain
barrier, spreads from macrophages, and expands within meningeal
tissues towards deep brain parenchyma [13,14]. The characterization of
viral isolates from cerebrospinal fluid (CSF) revealed that efficient viral
replication takes place within long-lived CNS cells [15]. Subsequent
viral shedding released from invading and perivascular macrophages
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permits infection of resident glial cells such as microglia and astrocytes
[16].

HIV-1 CSF variants recovered during acute stages of infection (<6
months) suggest early CNS involvement [17]. In the early stages of
CNS neuropathology, detectable changes in inflammatory markers
occur prior the appearance of neurologically-related symptoms [18].
Changes in neurocognitive status and the loss of neuronal integrity
markers can be detected during the acute stage of infection [9,19].
Immunochemical staining of brain sections of HIV+ patients who
have died from non–HIV-related causes revealed that the clinical
hallmarks of HAND were astrocytosis and microglial nodules, at the
time of death [20]. Interestingly, neurological involvement associated
with HIV infection may be of prognostic value in terms of determining
mortality risk during the course of infection. Findings from a large
cohort study (n=1,651) indicate that HIV-infected subjects with at
least 1 comorbid neurological involvement have a higher mortality risk
than do those without neurological comorbidity [21]. Thus, HIV CNS
burden, with or without apparent development of HAND, represents
an important clinical challenge because of the relatively high risk of
mortality throughout the course of the disease.

The Role of the HIV-1 Envelope in CNS Infection
During the course of the disease, viral factors can influence the

neurocognitive impairment outcome [11]. The HIV-1 viral genome
encodes for proteins that are required for viral infectivity and
pathogenesis. The well-studied HIV-1 envelope (env) encodes for the
heavily glycosylated spike protein HIV-1 gp120 and the
transmembrane protein HIV-1 gp41. The primary targets of HIV-1 are
the circulating cells of the monocyte lineage and lymphoid lineage.
Infection is accomplished by engaging, first, the CD4 receptor and then
subsequently one or both of the chemokine co-receptors: CCR5 (R5)
or CXCR4 (X4) [22,23]. In the case of neurons, some express CXCR4
[24] but are not productively infected by HIV-1 [25]. Despite the lack
of infection, neurons are not spared from the neurotoxic damage
caused by viral proteins such as gp120. For example, the presence of
gp120 induces neuronal apoptosis in murine models of HIV
neuropathology and in primary human brain cultures [26,27]. These
effects depend on the genetic make-up of gp120 and are useful in
discriminating between neurotropic and neurovirulent isolates.

In general, HIV-1 envs are categorized (based on the preferred co-
receptor utilized for cellular entry) as being X4-, R5-, or dual-tropic
(D-tropic) isolates [22,23]. Within the same host, HIV-1 env displays
high nucleotide sequence variation at the time of viral sampling
[28-31]. There are 5 variable regions, termed V1 through V5, that are
embedded between 5 constant regions (C1-C5) and that influence viral
co-receptor preference and cellular tropism [23,32]. The hypervariable
region 3 (V3) has been the subject of extensive study because of its
usefulness in inferring and predicting viral phenotype [33-36]. Mainly,
genetic variability within the V3, and to a lesser extent genetic diversity
in regions outside V3 (i.e., hypervariable regions V1/V2 and V4/V5),
confers viral isolates with the phenotypic capacity to engage the CD4
receptor and either the CCR5 [37] or the CXCR4 co-receptor to
mediate cellular entry [23].

Co-receptor tropism is influenced by the collective net charges of
the amino acid side chains in V3. The occurrences of positively (H+K
+R) and negatively (D+E) charged amino acids are summed to obtain
the overall net charge [38]. R5 variants are favored when the net
positive charge in the V3 loops is lower than 5, whereas X4-using and

D-tropic strains are favored by a net charge of 5 or greater in V3
[34,39]. R5-tropic envs are the predominant variant forms found
before the onset of the neurological manifestation of and during the
acute and early chronic stages of the natural course of HIV-1 infection
[40]. In contrast, CXCR4-tropic (X4-tropic) envelopes emerge at the
latest stages of disease [40] and are associated with the marked
depletion of CD4+ lymphocytes in individuals whose infection consist
primarily of these envelopes compared to those individuals harboring
mainly R5 viral population [41]. Despite variable tropism, HIV-1 envs
from the brain display a preference for CCR5 during the early stages of
infection [20]. However, a subsequent switch in co-receptor usage from
R5 to X4 is common as the HIV-infection progresses along its natural
course [41].

Sequence studies comparing brain-derived envs from impaired
versus non-impaired HIV+ patients have led to a better understanding
of the neurotropic and neurovirulent mechanisms of HIV-1
[20,26,42,43]. The above-mentioned studies have also highlighted an
important link between genetic variability within env and the
occurrence of neurotropic genotypes that can influence neurologic
progression. Assessments of the biological functions of the motifs
located within envs from neurocognitively impaired patients have
provided a clearer understanding of the impact of HIV-1 genetic
variance at play during HAND pathogenesis [26]. Cross-sectional and
longitudinal studies of subjects with neurocognitive impairment have
shown that envs obtained from plasma and CSF exhibited changes in
their nucleotide and amino acid sequences [15,17,44]. A classic clinical
study found that HIV-1 sequences from CSF were more genetically
diverse within the C2V3 region of HIV+ subjects with severe
neurocognitive impairment than they were in those same regions of
HIV+ subjects without cognitive impairment [45]. However, other
studies show that the autologous genetic diversity within V3 in CSF
envs is usually lower than plasma env genetic diversity [46,47].

Interestingly, the characterization of sequences from the CNS viral
pool provides evidence that neurotropic HIV-1 isolates, to some
extent, may govern the neuropathogenic development of HAND.
Recovered HIV-1 strains from CSF are often genetically unique and
exhibit variable cellular tropism and co-receptor preference
[15,17,20,46,48]. A comparison of full-length env sequences obtained
by single genome amplification in CSF unraveled the neuroadaptive
features of the CNS viral population in subjects with or without
neurocognitive impairment [49]. A sequence comparison of
autologous plasma envs revealed that genetic determinants for CSF
envs contain shorter V1/V2 loops and a lower mean number of
glycosylation sites [49]. Evering et al. 2014 concluded that
neuroadaptation ensued as a consequence of immune selection in the
CNS. Loss of CNS immune control appears to be important in the
occurrence of neurotropic isolates [46]. Phylogenetic analyses of HIV-1
env sequences from neurocognitively impaired brains identified
macrophages as the culprit sources of viral brain infection [11].
Additional phylogenetic evidence indicates that the rate of HIV-1 env
evolution in meningeal tissues and parenchymal brain regions is non-
specific and is associated with the expansion of macrophage infection
[14]. Hence, HIV-1 macrophage infection [11,50,51] and altered
immune responses [45,46] are associated with the neuropathological
progression of neurocognitive impairment. In sum, these observations
provide indirect support that HIV-1 gene evolution influences HIV-
related neuropathology and that cell-type–specific env strains can
affect neuropathogenesis.
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HIV-1 CNS Evolution and HIV-1 env Diversity over the
Course of Infection

Lentiviruses demonstrate extensive genetic evolution throughout
the course of infection [52]. Not surprisingly, HIV-1 evolves within the
tissues of the invaded host as a viral strategy to mediate persistent
infection. HIV-1 genetic evolution ensues, generating diverse
phenotypes with distinct pathological features [53]. Among the
contributing factors needed for HIV-1 to evolve are deficiencies in the
error proofing activity of the HIV-1 reverse transcriptase [54], the
genetic recombination of the compartmentalized autologous virus
[28,30], and the emergence of escape variants from antibody-mediated
immune neutralization [45,46].

The precise time that env evolution occurs in CNS remains
unknown, but a few studies that have examined env sequences suggest
that the emergence of a diverse viral population ensues before the
manifestation of neuropathological disease [18,20,55]. HIV-1 env
subpopulations isolated from peripheral blood samples are produced
by cells with similar life spans [56]. In recently infected subjects,
independent viral populations with low genetic variability are detected
within less than 1 year [57]. Tissue-specific evolutionary patterns of
viral isolates differ in HIV-infected subjects with or without HAND
[58,59]. The rate of genetic evolution is seemingly higher in the
lymphoid tissues of patients with a HAND diagnosis [59]. A
phylogenetic model addressing the dynamics of viral gene flow in the
CNS indicates that HIV-1 evolution in the env gene develops in a non-
specific manner [14]. The consequence of HIV env evolution is the
occurrence of compartmentalized isolates with distinct tissue-specific
genetic features which can induce functional phenotypic changes in
each isolate. Therefore, the recovery of compartmentalized variants
unique to the CNS [17] is a subject of clinical interest, as is their
individual contribution to influencing HAND pathogenesis.

It is widely accepted that the CNS milieu promotes adaptive
pressures on the invading virus. The CNS is characterized by the
variable anatomical and cellular distribution of the chemokine
receptors CXCR4 and CCR5 utilized by HIV [60,61]. Astrocytes and
microglia exhibit low levels of CXCR4 and CCR5 expression compared
to other chemokine receptors [61]. Neurons express CXCR4 but not
CCR5, and the expression pattern of the former is distinct according to
the brain regions sampled [60]. For example, both HIV+ and HIV-
brains are immunoreactive to CXCR4 within the cytoplasm of some
hippocampal and brainstem neurons [24]. Nonetheless, the
predominant expression of CXCR4 levels is detected in regions
associated with the limbic system and basal ganglia [60]. Therefore it is
probable that chemokine receptor availability expressed by glial and
neuronal cells can contribute to CNS viral evolution, resulting in a
“bottleneck effect” that selectively favors viral isolates with lower
coreceptor dependence and higher coreceptor affinity.

In addition to the selective pressures from the widespread
chemokine receptor expression variability and the distinct cell
populations in CNS, HIV-1 evolution results from compromised
immune responses during HAND. Patients with HAD demonstrated
higher viral diversity in CNS than did matched HIV+ controls without
such neuropathology [45]. CNS viral diversity resulted from the
inability of serum from HAD patients to neutralize recombinant virus
containing C2V3 regions that was isolated from the brain of HIV+
neurocognitively impaired patients [45]. The antibody-mediated
neutralization response against R5 and X4 isolates was tested in virus-
containing media by using dilutions of each patient’s sera against the

HIV-1 strains NL4-3 (X4) and YU-2 (R5) [45]. Sera from HAD
patients mainly failed to neutralize recombinant HIV-1 NL4-3 that
contained C2V3 from the brains of patients suffering from HAD [45].
These observations were further supported by Pillai, et al. [46], who
showed that the CSF of 18 of the subjects studied had reduced
neutralization activity against the R5-tropic JR-CSF and the X4-tropic
NL4-3 strains compared to autologous plasma.

Accumulated evidence indicates that heterogeneity both within and
without the V3 region influences the extent of CNS infection by
providing isolates with cell type-specific tropism. For example,
astrocytes were previously considered to be secondary players in
HIV-1 neuropathology but now the extent of astrocytic involvement is
better understood during neuropathology [16,62]. Astrocytic infection
is more prominent in subjects with HIV-1 encephalitis and such a
finding correlates best with increase neuropathologic markers [16,62].
Microdissection techniques in combination with single-cell PCR
methods have made it possible to identify astrocyte-specific sequences
within V3 in some subjects with HAND [62]. In 1 patient, the
astrocyte-specific HIV-1 envs sequences contained a key proline
residue at position 13 within V3 [62].

Interestingly, mechanistic studies show that macrophage tropic (M-
tropic) strains recovered from CNS tissues have altered mechanisms
that facilitate efficient entry into macrophages. M-tropic strains are
characterized by their low CD4-dependence and by their increased
capacity to mediate efficient cellular fusion [43,48,63]. In vitro studies
focused on unraveling the driving mechanisms of M-tropism in HIV-1
envs have identified some sequence characteristics that cause isolates
to efficiently enter macrophages [26,42,50,51,64]. One key mechanism
consists of the combined changes in potential N-linked glycosylation
sites (PNLGs). PNLGs are amino acid motifs in which a glycan moiety
is added to an asparagine found within the triplet amino acid sequence
N-X-[T/S]. Glycosylation occurs in the 1st arginine (N) residue of the
sequence motif, if it is followed by any amino acid (X) in the 2nd
position (except proline), and is followed by either a threonine (T) or
serine (S) in the 3rd position [65]. A shift in the number and location
of PNLGs is critical to confer variable phenotypes on HIV envelopes.
CSF sequences have a reduced number of PNLGs compared to
sequences from plasma sources [46]. The modulation of PNLGs can
dramatically affect HIV-1 phenotype to provide M-tropism and the
capacity to evade immune neutralization [50,64,66]. Specifically, one
instance in which env acquires increased neurotropism occurs because
of the loss of a PNLG at position 386 of the V4 region [64]. Conversely,
results from a study comparing autologous evolution between CSF and
plasma in 4 subjects with HAND versus 5 without HAND found
significant genetic differences, though only in the C4 region [59]. Thus
it appears that amino acid composition as well as PNLGs spanning
from the constant region 4 (C4) to V5 play key roles in both antibody
evasion [66] and enhanced viral infectivity [50,51,59]. These findings
highlight the relevance of the occurrences of position-specific amino
acid residues that are critical for specific cell-type tropism.

HIV-1 gp120 Tropism and the Severity of
Neurovirulence and Neurotoxicity

R5-utilizing M-tropic envs not only show reduced CD4 dependence
but also show high affinity for CCR5 [43]. In addition to these features,
R5-M-tropic isolates, such as gp120 BaL, can induce neuronal
apoptosis. For instance, the injection of recombinant HIV-1 gp120 BaL
into rat striatum resulted in prominent toxicity to the rat’s neurons and
a distinctive neurotoxic profile that is linked to HIV-1 tropism [27,67].
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The neuronal apoptosis induced by HIV-1 gp120 BaL was restricted to
the site of the injection (i.e., the brain) [27]. X4-utilizing M-tropic
strains demonstrate alterations in the conformational mechanism
whereby HIV-1 gp120 sequentially interacts with CD4 and CXCR4 in a
more efficient manner [38]. In addition, The HIV-1 gp120 IIIB is the
representative X4-tropic strain and triggers a wider neuronal apoptotic
effect that is distributed locally and distally from the site of the
injection [27]. Furthermore, in vitro infectivity assays using
lymphotropic SF2 and macrophage-tropic SF128A HIV-1 strains
showed that infection of microglia but not of astrocytes was highly
dependent on the strain used [68]. Neurovirulent strains of HIV-1
gp120, namely, MACS-1Br, MACS-1spln, and UK1-br, induced
neuronal apoptosis in primary neuronal cultures to a greater extent
than did autologous envs obtained from lymph nodes [26].

In clade C isolates, neurotoxicity is mainly driven by cysteine-rich
motifs in HIV Tat. However, besides HIV Tat-induced neurotoxicity,
variability in neurotoxicity caused by genetic differences in gp120 of
clade C HIV has been reported to occur [69]. Using the human
neuronal cell line SH-SY5Y as a model of neuronal toxicity, the authors
demonstrated that HIV clade C strains from India were less neurotoxic
than clade C strain from southern Africa. This study provided new
insight into why there are some geographical differences in
neurological involvement between cases with clade C HIV infection
[69]. In addition to the variability in neurotoxicity among region-
specific isolates from the same HIV subtypes, neurotoxicity appears to
exhibit clade-specific variations. For example, conditioned-media from
HIV-infected human macrophages is more potently neurotoxic to both
rat and human neurons in groups from clade B HIV-1 than from clade
C HIV-1 [70]. A recent study addressing the neurotoxic mechanisms
between clade B and clade C HIV gp120 demonstrated that the
dopamine system is preferentially affected by HIV gp120 B but not by
gp120 C [71]. Specifically, clade B gp120 appears to promote
neurotoxicity by impairing the expression of dopamine receptors
(DRD-2), dopamine transporters (DAT), and the signaling proteins
calcium/calmodulin kinases (CaMK) type 2 and 4 in astrocytes when
compared to gp120 from clade C [71]. Of particular interest, the
downregulation of dopamine system proteins was synergistically
induced by concomitant treatment with methamphetamine. However,
in this mechanistic study, neurotoxicity was assessed using primary
human astrocytes [71], and whether similar neurotoxic mechanisms
are the case with neurons remains elusive. Not surprisingly, such
differences in mediating neurotoxicity were located on the V3 and C3
regions. Computational analysis indicated that V3 and C3 variability
led to a distinct spatial rearrangement of gp120 motifs between both
clades [71]. Genetic heterogeneity in HIV-1 env is not only critical for
neurotropism and cell entry but also crucial for exerting potent
neurotoxicity and for causing neuropathology. Thus, assessing HIV env
genetic differences may be of prognostic value as doing so might
provide viral markers that will allow health care practitioners to
determine the risk of neuropathological development of HAND that is
independent of a particular host’s individual risk factors.

HIV-1 CNS Viral Reservoirs and Combined
Antiretroviral Therapy (cART)

New and potent antiretroviral regimens have improved the outlook
of many AIDS patients, reducing their risk of mortality by half [3].
Subjects on cART demonstrate improvement in their CD4+ count,
have reduced plasma viral load and have attenuated inflammatory
responses within the CNS [72]. Hence, the initiation of cART regimens

can significantly allay the early neuropathogenic development of
HAND. The CHARTER study proved that the neuropathological
features of HIV, such as microglial nodules and astrogliosis, were
found with less frequency in asymptomatic brains than in brains of
individuals in advanced stages of CNS involvement [4]. Unfortunately,
another population-based study showed there is no significant benefit
for CNS-targeted cART regimen [73].

Phylogenetic studies of HIV-1 env evolution have provided evidence
of the clinical challenges that still need to be addressed, even now, in
the current antiretroviral era. [74]. Viral reservoirs represent a
continuous burden because of their ability to replenish the viral pool as
a means of inducing persistent infection. For example, in some
patients, C2V3 plasma variants have been recovered despite those
patients having undergone successful therapy [75]. Reactivation of
HIV-1 strains occurs because of therapy failure or after antiretroviral
treatment interruption [76]. The interruption of antiretroviral
regimens often triggers rebound viremia that is genetically similar to
isolated latent reservoirs [77].

Changes in the genetic composition within the V3 region of env can
show there to be either an increase or decrease in genetic diversity [76].
Moreover, the genetic complexity of the gp120 V3 region of the viruses
in 17 out of 27 patients who interrupted antiretroviral therapy changed
over a period of 12 weeks [76]. The genetic diversity of the HIV-1 viral
pool often remains low during suppressive antiretroviral therapy
[74,78]. In early seroconverters, diversity within V3 from plasma
isolates is influenced by cART. After 60 weeks of therapy, cART
restricts V3 diversity to different extents. Interestingly, HIV-1 viral
divergence within V3 decreases, indicating that the broad genetic
makeup within this region may shift back to be similar to that of the
founder virus [79]. Viral evolution studies further noted that the
reactivation of “ancestral” virus may originate in long-lived cells [78].
Amplified variants from 6 patients undergoing suppressive
antiretroviral therapy after 2 years showed genetic similarities to the
ancestral virus, suggesting that ongoing replication may go undetected
even in the setting of cART [74]. However, the exact mechanism as to
why this genetic diversity shifts to resemble that to the founder virus
remains unknown.

The cellular source of viral reservoirs was identified using a
macaque model of SIV infection and of rapid CNS disease progression
[80]. This report showed that the latently harbored virus originated
from a minor subset of resting memory CD4+ T-cells in the blood.
Macaques receiving antiretroviral therapy had a significant decline of
latently infected CD4+ T-cells by 175 days post-inoculation compared
to therapy-naïve SIV-infected controls [80]. In a longitudinal study, the
impact of cART on the phylodynamic changes of viral reservoir
population was investigated in 8 patients. Phylogenetic analysis of
single genome HIV-1 sequences before the initiation of cART revealed
that few genetic changes occurred after a period of 4 to 12 years in
therapy [81]. The effect of cART on the phylodynamic changes did not
differ between individuals treated during early infection and those
treated at later stages of infection. The study concluded that, after
suppressive long-term cART, stable genetic HIV variants are found in
resting memory CD45RO+/CD27 (+/-) T-cells [81].

The study of HIV-1 evolution remains an important means of
understanding both the contribution of viral heterogeneity to HAND
disease and the association between clinical neurocognitive outcomes
and viral neuropathogenesis. A more complete understanding HIV-1
evolution may represent a key aspect in the eventual successful
eradication of HIV-1 infection. In fact, a large sequence database from
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clinically well-defined HIV cases has been established in an effort to
identify and better understand the viral genetic characteristics [82].

Conclusions
We have reviewed the relevant literature on HIV-1 viral evolution in

the setting of the neuropathogenic comorbidity of HAND. HIV-1 viral
evolution appears to be an ongoing phenomenon independent of
neurological and neurocognitive disease severity [18,20,55,83]. An
important consequence of viral evolution could be the subsequent
emergence and appearance of neurovirulent strains. Based on clinical
findings, the extent of viral evolution appears to vary according to the
severity of HAND [83,84]. Among the culprits of disease progression,
evidence points to HIV-1 env variability as a key factor that triggers
and sustains neuropathology. Thus, HIV-1 env evolution plays a key
role in and significantly influences HAND progression. To date,
neurological comorbidities due to HIV-1 infection continue to be a
significant clinical challenge, despite ongoing long-term cART, as the
reactivation of latent virus may continue to burden HIV+ subjects
[76]. Although cART does not eradicate HIV-infection, studies should
aim to understand whether env evolution in viral reservoirs causes the
neurotoxic and neurovirulent attributes in neuronal and glial cultures
and animal models to be retained.

Taken in sum, our review highlights the importance of studying
genetic variability within HIV-1 env as an additional risk factor for the
development of NI. In addition, we recommend that future research
emphasize those env genetic signatures with the potential to be
neurotropic during early and asymptomatic stages so that tools for
predicting neuropathological outcomes can be developed. In
conclusion, there is a better understanding of HIV-1 virus evolution
within the env gene during the onset of disease, and this knowledge
should be exploited in the development of future therapies aimed at
controlling CNS burden, diminishing persistent viremia, and
eradicating viral reservoirs.
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