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Overview
Enzyme inhibitors are molecules that bind to enzymes and lower 

their activity. Many drugs are enzyme inhibitors due to the correction 
of metabolic imbalance may occur, as a result of blocking an enzyme 
activity. Therefore, the discovery of enzyme inhibitors is an active area 
of research in biochemistry and pharmacology. Not all molecules that 
bind to enzymes are inhibitors; enzyme activators bind to enzymes 
and elevate their enzymatic activity [1,2]. Inhibitor binding is either 
reversible or irreversible. Usually, irreversible inhibitors react with 
the enzyme and change it chemically. Reversible inhibitors bind 
non-covalently to produce different types of inhibition, depending 
on whether these inhibitors bind the enzyme, the enzyme- substrate 
complex, or both. There are different types of reversible inhibition 
that may be competitive, non-competitive types and uncompetitive, 
although a mixed type sometimes arises [1,2].

In competitive inhibition, the substrate and inhibitor cannot bind 
to the enzyme at the same time. It can be overcome by sufficiently high 
concentrations of substrate. Competitive inhibitors are often similar in 
structure to the real substrate. Non-competitive inhibition is a form of 
inhibition where the binding of the inhibitor to the enzyme reduces 
its activity, but does not affect the binding of substrate. However, an 
allosteric effect occurs where the inhibitor binds to a different site 
on an enzyme. The value of the inhibition constant (Ki) is used as an 
indication for the degree of enzyme inhibition [2]. There is a mixed-
type inhibition that is a form of the non-competitive type [1].

The inhibition pattern is studied by both Lineweaver-Burk and 
Dixon plots. Lineweaver-Burk plot is drawn by plotting the reciprocal 
values of the initial velocity of the enzymatic reaction (1/v) versus the 
reciprocal values of substrate concentration (1/[S]), in the absence 
and presence of different fixed concentrations of the inhibitor. Dixon 
plot of enzyme reaction is drawn by plotting 1/v versus the inhibitor 
concentration, [I], in presence of different fixed concentrations of 
substrate, [S] [3]. In Lineweaver-Burk plots, the lines of 1/v versus 
1/[S] in the presence of several concentrations of the inhibitor [I], 
intersect at the same point on the vertical axis for the competitive type, 
and intersect at the same point on the horizontal axis for the non-
competitive type. The lines of the mixed type intersect between the two 
axes. In Dixon plots, the lines of 1/v versus [I] in the presence of several 
concentrations of [S] (increasing towards the horizontal axis), intersect 
between the two axes for the competitive type, whereas they intersect at 
the same point on the horizontal axis for the non-competitive type. The 
lines of the mixed type intersect at the same point on the vertical axis.

According to the Michaelis-Menten kinetics of the enzyme 
reaction, Vmax describes the maximum initial velocity of the enzyme 
reaction as an indication of the saturation of the enzyme by its 
substrate. The Michaelis constant (Km) is the substrate concentration 
at half maximum velocity of a steady state reaction. Its value is an 
indication for the affinity of the enzyme to a specific substrate. In the 
enzyme inhibition, these kinetic data of the enzyme reaction (Vmax and 
Km) may be changed according to the inhibition type. The competitive 
inhibitors do not alter Vmax and increase Km. Competitive inhibition 
can be prohibited by increasing substrate concentration, and block 
substrate binding to the active site of an enzyme. On the other hand, 
the non-competitive inhibitors do not alter Km value and decrease Vmax. 
This type of inhibition cannot be prohibited by adding excess substrate. 
The inhibitor binds to a site outside of catalytic site of enzyme and acts 
by decreasing the turnover number of an enzyme [1].

Inhibition of Glycosidases
Glycosidases are carbohydrate-processing enzymes that have 

a variety of roles in important biological processes [4-6]. Modifying 
or blocking these processes for therapeutic or biotechnological 
applications, with the use of potent and selective inhibitors for these 
enzymes has become an interesting target. Lysosomal α-glucosidase 
(α- D-glucoside glucohydrolase, EC 3.2.1.20) is an exoglucosidase that 
has both a-(1.4)-and α-(1.6)-glucosidase activities. This enzyme plays 
an important role in glycogen breakdown, by catalyzing the hydrolysis 
of lysosomal glycogen [7]. Many mammalian acid α-glucosidases have 
been purified from different sources [8]. Acid α-glucosidases possess 
both maltase and glycoamylase activities [9], and these have pH 
optima in the range of pH 4-5 [9-19]. Another important lysosomal 
glycosidase is β-glucuronidase (β-D-glucuronide glucuronohydrolase, 
EC 3.2.1.31), which hydrolyzes the glucuronide bond at the 
nonreducing terminal of glycosaminoglycans [20]. The level of this 
enzyme activity is elevated in some human tumors [21-23]. It has been 
reported that acidic α-glucosidases are regulated within the regulation 
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Abstract
The enzyme inhibition is valuable in the regulation of the enzyme activity. It has many applications, which include 

the drug design to target an enzyme. In the present review, we focus on the inhibition of different enzymes such as 
glycosidases, arylsulfatases and others by synthetic inhibitors or drugs. This provides the strategy that combines the 
inhibitory and therapeutic mode of action of the confirmed inhibitors.
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of lysosomal glycogen metabolism [8], whereas β-glucuronidase is 
regulated by phosphorylation of its carbohydrate [21] or protein [24] 
moieties. Glycosidase inhibitors [25-27] exert their biological effect by 
competitively inhibiting specific glycoside-processing enzymes, and 
much attention has been directed to developing therapeutic agents 
acting on such enzymes, whereby some potential beneficial drugs are 
clinically evaluated [28,29]. 1-Deoxynojirimycin (dnm) (Figure 1) is a 
potent inhibitor for all types of mammalian α-glucosidases, and has 
anti-HIV activity [30]. The respective derivative 1,5-dideoxy-1,5-[(6-
deoxy-1-O-methyl-6-a-D-glucopyranosyl)imino]-D-glucitol (MDL 
73945) (Figure 1) is a selective and potent intestinal α-glucohydrolase 
inhibitor [31]. The examination of the skeleton of 1-deoxynojirimycin 
and its analogues shows that the β-hydroxyalkylamine residue can be 
considered as a part of such inhibitors. The skeleton of MDL 73945 has 
the nitrogen linked to the C-6 of a 6-deoxyglucoside.

Since the structural analogues of dnm [5,6,32] are important, 
glycosidase inhibitors having these structural features were designed 
by considering the disconnection in DNM, such as ethanolamine 
and diethanolamine. Replacing the 1-deoxynojirimycin (DNM) 
ring by a simple cyclic amine ring having a chair conformation, and 
characterized by a close similarity to the DNM moiety, led to DNM 
derivative whose inhibition constant (Ki) was found to be 1.3 x10-4 M. 
This value of Ki is considered in the range of action against β-glucosidase 
from sweet almond [33]. Therefore, phenylglucoside was intensively 
studied as an enzyme inhibitor. It was found that the magnitude value 
of the inhibition constant of enzymes is dependent on the structure 
of the inhibitor [34]. Both α-glucosidase and β-glucuronidase were 
inhibited in vitro and in vivo by mono and diethanolamines [34]. 
Phenyl 6-deoxy-6-(morpholin-4-yl)-β-D-glucopyranoside (Figure 2) 
inhibited α-glucosidase, both in vitro and in vivo. The in vitro treatment 
of the enzymes by ethanolamine displayed a reversible inhibition of the 
mixed and competitive types for α-glucosidase and β-glucuronidase, 

respectively. Diethanolamine has a reversible inhibition of the 
competitive type for both enzymes. This compound is a potent 
inhibitor for β-glucuronidase in vitro, whose inhibition constant (Ki) 
is 5x10-5 M. Phenyl 6-deoxy-6-(morpholin-4-yl)-β-D-glucopyranoside 
(Figure 2) is also a potent inhibitor, only for hepatic α-glucosidase with 
a Ki value of 1.6x10-5 M. The pH profile of the enzymatic assay was not 
affected by ethanolamine inhibition [34].

Nojirimycin and deoxynojirimycin are potent inhibitors of 
glucosidases [35-39]. A good competitive inhibition of sweet 
almond β-glucosidase has been exhibited by the amidine [40] and 
the amidrazone [40,41]. 1,2,4-triazole competitively inhibited 
β-glucosidases from sweet almond and Caldocellum saccharolyticum 
[42], in contrast to respective 1,2,3-triazole and tetrazole analogues 
[43,44]. Therefore, acyclic analogue of 1,2,4-triazole was designed by 
applying the disconnection at the C-N bond, to offer the respective 
seco-analogue. This postulation has been supported by the inhibition 
of yeast α-glucosidase by some acyclic analogues such as 2-deoxy-2-
(1-hydroxyeth-2-yl)amino-glycerol which displayed a competitive 
[45], but exhibited uncompetitive inhibition of β-glucosidase [46]. 
Furthermore, the presence of a basic group as well as functional groups 
capable of hydrogen bonding may stimulate the binding to the enzyme. 
The in vitro and in vivo effects of 4-amino-3-(D-glucopentitol-l-yl)-5- 
mercapto-1,2,4-triazole [47,48] and its simple analogue 4-amino-3-
methyl-5-mercapto-1,2,4-triazole (Figure 1) [49], on purified hepatic α 
and β-glucosidases, β-glucuronidase and α-amylase have been studied. 
α-glucosidase is the enzyme that is markedly affected, both in vivo and 
in vitro in a dose-dependent manner by 4-amino-3-(D-glucopentitol-l-
yl)-5-mercapto-1,2,4-triazole and its 3-methyl analogue (Figure 1). The 
in vivo and in vitro effects of on α-and β-glucosidases, β-glucuronidase 
as well as α-amylase have been investigated. The compounds have a 
reversible inhibition of a competitive type for α-glucosidase. Moreover, 
they exert a relatively potent in vitro inhibition on α –glucosidase, with 
a Ki magnitude of 10-4 to 10-5 M [50].

Recently, the in vitro treatment of some glycosidases by 
4,5-diphenylimidazole-2-thione (Figure 3) exhibited a reversible 
inhibition of the non-competitive type, with Ki value of 3.5 
and 6.5 x 10-5 M for α-glucosidase and α-amylase, respectively. 
4,5-diphenyl-1,2,4-triazole-3-thione (Figure 3) showed a reversible 
inhibition of the competitive and non-competitive types, with Ki 
value of 10-5 M magnitude for α-glucosidase and α-amylase. No 
observation of an inhibitory effect towards α-amylase was detected 
by 5-(o-hydroxyphenyl)-4-phenyl-1,2,4-triazole-3-thione (Figure 
3). On the other hand, this compound has a potent inhibition of the 
competitive type for hepatic α-glucosidase with 10-5 M magnitude 
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Figure 1: Structural formulae for 1-nojirimycin (DNM) and deoxynojirimycin (1), 
1,5-dideoxy-1,5-[(6- deoxy-1-O-methyl-6-α-D-glucopyranosyl)imino]-D- glucitol 
(MDL 73945) (2) and its analogue (3), 1,2,4 triazole (4), the seco- analogue (5), 
4-amino-3-(D-glucopentitol-l-yl)-5-mercapto-1,2,4-triazole  (6) [34,50].
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Figure 2: Structural formula for phenyl 6-deoxy-6-(morpholin-4-yl)-β-D- gluco-
pyranoside [34].
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of Ki value [51]. The therapeutic effect of these compounds is being 
intensively studied in coccidian infection of rabbits [52].

Schistosomicidal Drugs
The chemotherapeutic treatment of schistosomiasis occurs with 

praziquantel or oxamniquine [53]. Praziquantel is the drug of choice 
because it is more effective than oxamniquine, especially for the 
treatment of the infection by Schistosoma mansoni [54]. Alternatively, 
extracts from herbal products are used as effective schistosomicidal 
drugs [55], due to drug resistance to praziquantel [56]. An important 
herbal antischistosomal therapy is derived from myrrh from the stem 
of the plant Commiphora molmol [53].

However, a change in various enzymes was observed during 
Schistosoma mansoni such as arylsulfatase B [57], and many hydrolases 
[58-61]. Arylsulfatases A, B and C (arylsulfo-hydrolases) are a group 
of hydrolytic enzymes that occur in various tissues and fluids [62]. 
Arylsulfatase B (EC 3.1.6.9) is a lysosomal hydrolase, which desulfates 
the non-reducing terminal N-acetylgalactosamine 4-sulfate residues 
present in glycosaminoglycan [62]. Since this enzyme is significantly 
increased in schistosomiasis [59], and its properties in this disease 
are still obscure, the interaction of some drugs that are used for the 
treatment of schistosomiasis with this enzyme was investigated. The 
effect of drugs in vitro on the purified enzyme from the liver of the 
infected mouse is examined, to find their influence on its catalytic 
and immunological properties. The binding properties between this 
enzyme and its specific antibody are studied in a comparative manner, 
and both kinetic and immunological properties are investigated in the 
absence and presence of the drugs.

The catalytic and immunological properties of purified arylsulfatase 

B from the liver of Schistosoma-infected mouse was investigated in the 
presence and absence of the schistosomicidal drugs, praziquantel and 
Commiphora extract. The in vitro effect of praziquantel was found to 
be inhibitory with a Ki value of 5.5 X 10-4 M, while that of Commiphora 
extract was as an activator [63].

In another kinetic study, the purified succinate-cytochrome c 
reductase (SCR) in the absence and presence of the schistosomicidal 
drugs praziquantel and Commiphora extract, reveal that both drugs 
have an inhibitory action on the enzyme from the control and 
Schistosoma-infected mice. Praziquantel changes the type of inhibition 
of the enzyme towards cytochrome c (Cyt c) from mixed type in 
control to a competitive one in the case of the infection [61]. On the 
other hand, Commiphora extract changes the inhibition pattern of the 
enzyme towards 2,6-dichlorophenolindophenol (DCIP) or Cyt c from 
mixed type in control to competitive one for the enzyme from infected 
mouse, towards either DCIP or Cyt c. The effect of praziquantel and 
Commiphora extract was performed in vitro on the purified enzyme 
from the liver of control and Schistosoma-infected mouse, respectively 
[64].

SCR catalyzes the oxidation of Cyt c or DCIP [65], and plays 
an important role in biological respiration [66]. The enzyme exist 
in a complex that is described as reconstituted active succinate 
dehydrogenase, possesses the ability to reconstitute with hydroquinone 
[67], or with soluble cytochromes bc1 complex [68], and uses 
ubiquinone as an electron acceptor [69]. This initiated the study of 
the effect of schistosomiasis on this enzyme. Hence, the study of the 
characterization of this enzyme in Schistosoma-infected and control 
mice was performed in a whole investigation of biomarkers of this 
infection.

Respiratory Drugs
Some drugs have been implicated in various respiratory and cardiac 

effects. Phenobarbitone is a sedative of the central nervous system and 
acts as a short acting barbiturate in the sedation of Angina pectoris [70]. 
Moreover, it has been reported as anticonvulsant drug and inhibits brain 
oxidative reactions in a convulsion mode [71]. Neostigmine, which is 
a stimulant of the parasympathetic nervous system, acts as a reversible 
anti-cholinesterase [72]. It is used in the control of the muscular disease, 
myasthenia gravis, and the treatment of certain types of glaucoma [68]. 
Also, it is implicated in the development of postoperative nausea [73]. 
Aminophylline is a vasodilator [74], which improves the cardiac index 
and pulmonary vascular resistance [75]. Gallamine (or flaxedil), which 
is chemically 1,3-tris-(diethylaminoethoxy)-benzene triethiodide, is 
considered as muscle relaxant, that has a cardiovascular effect [76,77]. 
These drugs have enormous marketing for medication, without enough 
knowledge of their specific action on the enzymes of the respiratory 
chain. Therefore, they were selected to study their effect on succinate-
cytochrome c reductase due to certain similarity in their structure.

SCR was inhibited in vitro and in vivo by phenobarbitone, aminophylline 
and neostigmine using both 2,6-dichlorophenolindophenol and 
cytochrome c as substrates [78]. The enzyme was also activated by 
gallamine towards both substrates. Phenobarbitone and aminophylline 
inhibited the enzyme, with respect to the reduction of the substrate in 
a non-competitive manner with Ki values of 10-5 magnitude. Moreover, 
neostigmine competitively inhibited the enzyme towards both 
substrates with Kj values of the same magnitude [78].

Inhibition of Aspartate Transcarbamylase
Aspartate transcarbamylase (abbreviated as ATCase, EC 
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2.1.3.2) catalyzes the second reaction in pyrimidine biosynthesis, 
which is the carbamylation of the α-amino group of L-aspartate by 
Carbomyl Phosphate (CP) to yield carbamoyl aspartate and inorganic 
phosphate [79-81]. The hepatic enzyme is inhibited by phenobarbital 
p-nitrophenylhydrazone in a reversible and non-competitive type with 
Ki magnitude of 10-5 M in the reactions towards CP and aspartate, 
respectively [82]. In vivo inhibition occurred in a dose-dependent 
manner [82]. In a later study, in vitro treatment of the hepatic enzyme 
with different quinazolinone derivatives (Figure 4) showed that 
they inhibited the enzyme activity, and that of 2-phenyl-1,3-4(H)
benzothiazin-4-thione is the most potent one. This compound acts 
as a non-competitive inhibitor towards both aspartate and carbamoyl 
phosphate. The values of the inhibition constant (Ki) indicate that this 
compound exerts a potent inhibitory effect upon the enzyme activity 
[83]. According to Lineweaver-Burk plot, different concentrations of 
2-phenyl-1,3-4(H)benzothiazin-4-thione yielded an inhibition pattern, 
in which the lines intersected at the horizontal axis and Vmax of the 
enzyme towards aspartate was decreased, and the observed Km value 
is unchanged. Therefore, the type of inhibition is a non- competitive 
type. The observed values of Km and dissociation constant of the 

enzyme inhibitor complex, Ki, were found to be 6.70 mM and 6.6x10-5 
M, respectively.

Similarly, the same inhibition pattern of the non-competitive type 
is obtained when CP is subjected as a substrate. The observed Km value 
of the enzyme is 1.25 mM. The observed Ki value for 2-phenyl-1,3-
4(H)benzothiazin-4-thione was determined as 9x10-5 M. On treating 
the enzyme by different concentrations of 3-amino-6,8-dibromo-2-
phenyl-4-(3H)quinazolinone, Vmax of the enzyme towards aspartate 
was decreased. The observed Ki value is 8.6x10-5 M. The detected 
inhibition pattern is also a non-competitive type, since a comparison 
between the control and treated enzyme with this compound showed 
that there is no change in Km value that is 6.70 mM in both cases. 
On using CP as a substrate, the treated enzyme with 3-amino-6,8-
dibromo-2-phenyl-4-(3H)quinazolinone showed a decreased Vmax and 
unchanged Km, that is equal to 1.25 mM. The observed Ki was found 
to be 1x10-4 M. However, the observed Ki value determined by Dixon 
plots that is made by plotting 1/v against different concentrations of 
2-phenyl-1,3-4(H)benzothiazin-4-thione and 3-amino-6,8-dibromo-
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Figure 4: Different quinazolinone derivatives.

Enzyme Inhibitor Inhibition type Inhibition Constant (Ki) (M) x10-5

α-Glucosidase Phenyl 6-deoxy-6- (morpholin-4-yl)-β-D- glucopyranoside Non-competitive [34] 1.60
β-Glucuronidase Ethanolamine Competitive [34] 0.10
α-Glucosidase Diethanolamine Competitive [34] 0.13

β-Glucuronidase Diethanolamine Competitive [34] 5.00
α-Glucosidase 5-mercapto-1,2,4-triazole Competitive [50] 0.36
α-Glucosidase 4-amino-3-methyl-1,2,4- triazole Competitive [50] 9.46
α-Glucosidase 4,5-Diphenyl-1,2,4- triazole-3-thione Competitive [51] 4.30

α-Amylase 4,5-Diphenyl-1,2,4- triazole-3-thione Non-competitive [51] 6.00
Arylsulphatase B praziquantel Mixed-type [62] 0.55

Succinate Cytc Reductase Phenobarbitone Non-competitive [77] 2.55
Succinate Cytc Reductase Aminophylline Non-competitive [77] 1.46
Succinate Cytc Reductase Neostigmine Competitive [77] 1.50
Succinate Cytc Reductase praziquantel Mixed-type [63] 0.003 ~ 0.004

Aspartate transcarbamylase phenobarbital p- nitrophenylhydrazone Non-competitive [81] 8.45 ~ 9.64
Aspartate transcarbamylase 2-phenyl-1,3- 4(H)benzothiazin-4-thione Non-competitive [82] 6.60 ~ 6.70
Aspartate transcarbamylase 3-amino-6,8-dibromo-2- phenyl-4- (3H)quinazolinone Non-competitive [82] 8.60 ~ 10

Table 1: A summarized chart of enzyme inhibitors and inhibition type for some reported enzymes measured at the standard conditions.
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2-phenyl-4-(3H)quinazolinone, were nearby to those obtained by the 
reciprocal plots [83].

A comparison between the enzyme inhibitors, in respect to the 
inhibition type and inhibition constant (Ki) of the reported enzymes 
in this review is illustrated (Table 1). The magnitude of Ki is expressed 
in the molar range and measured at the standard conditions for each 
enzyme. In fact, the inhibitor potency is dependent on many factors 
such as the chemical structure of the inhibitor, a variety of amino acid 
residues in the enzyme, shape complementarities of the inhibitor, the 
equilibrium between an enzyme and its inhibitor, and the different 
types of interaction [1,84,85].

Inhibitors of other Enzymes
Carbonic anhydrases

The carbonic anhydrases (EC 4.2.1.1) form a family of enzymes, 
which are classified as metalloenzymes and have an important catalytic 
function. These enzymes catalyze the interconversion of carbon 
dioxide and water to bicarbonate and protons, and vice-versa. The 
reaction is reversible and occurs slowly in the absence of the enzyme 
[86]. Most types of carbonic anhydrases contain zinc ion in their active 
site. An important function of these enzymes is the catalysis of the 
interconversion of carbon dioxide and bicarbonate, to maintain acid-
base balance in blood and other tissues. This helps in the transport of 
carbon dioxide out of tissues. The enzymes have the fastest catalytic rate 
constant, among other enzymes [87]. Carbonic anhydrase inhibitors 
can be used for long periods of time to treat people who have not been 
able to tolerate eye drops. They are also used when eye drops alone 
have not been effective in decreasing the pressure in the eyes. These 
inhibitors are very effective for lowering the pressure in the eyes [88].

Cyclooxgenases

The cyclooxygenases (EC 1.14.99.1, COX-1 and COX-2) are 

membrane-associated and hemoproteins. These enzymes are 
homodimers that generate prostaglandin H2 from arachidonic acid 
through prostaglandin biogenesis, and are the targets for nonsteroidal 
anti-inflammatory drugs. The compound N-(2-cyclohexyloxy-4-
nitrophenyl)methane sulfonamide (NS-398) was the first in a series 
of isoform-selective drugs, designed to preferentially inhibit COX-
2. X-ray crystal structure of murine COX-2 in complex with NS-398 
was determined utilizing synchrotron radiation to 3.0A resolution 
[89]. NS-398 binds in the cyclooxygenase channel in a different 
conformation from that observed for other COX-2-selective inhibitors, 
such as celecoxib. Moreover, the methane sulfonamide moiety of NS-
398 interacts with the side chain of Arg 120 residue, at the opening 
of the cyclooxygenase channel. This occurs similarly to that observed 
for acidic nonselective, nonsteroidal, anti-inflammatory drugs such 
as indomethacin and flurbiprofen. Arg 120 residue was identified as 
a molecular determinant for time-dependent inhibition of COX-2 by 
NS-398 [89]. Recently, a novel inhibitor for cyclooxygenase-1 FK881 
was found to be useful in treating symptoms of rheumatoid arthritis 
and osteoarthritis. Its inhibitory effect is potent and selective for COX-
1 [90].

Topoisomerase

Topoisomerase I and II (type I: EC 5.99.1.2, type II: EC 
5.99.1.3) are enzymes that regulate the changes of the structure of 
DNA. These enzymes catalyze the breakdown and rejoining of the 
phosphodiester backbone of DNA strands, during the normal cell 
cycle [91]. Topoisomerase inhibitors are designed compounds, for 
the interference with the action of topoisomerase enzymes [91]. It is 
thought that topoisomerase inhibitors block the ligation step of the 
cell cycle, generating single and double stranded breaks that harm the 
integrity of the genome. Introduction of these breaks subsequently lead 
to apoptosis and cell death. Topoisomerase inhibitors can also function 
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as antibacterial agents, and quinolones are among these compounds 
[92-93].

Topoisomerase inhibitors are often classified, according to 
which type of enzyme it inhibits. Topoisomerase I inhibitors are 
irinotecan, topotecan, camptothecin, lamellarin D, and all target 
type IB topoisomerases. Topoisomerase II inhibitors are etoposide, 
teniposide, aurintricarboxylic acid [94], and the quinolone HU-331 
(Figure 5) that is synthesized from cannabidiol. Numerous plant 
derived natural phenols such as epigallocatechin-3-gallate (Figure 5), 
genistein, quercetin and resveratrol were reported. They possess potent 
topoisomerase inhibitory effects, affecting both types of enzymes [95-
99]. However, the use of topoisomerase inhibitors for antineoplastic 
treatments may lead to secondary neoplasms because of DNA damaging 
properties of the compounds. Also, plant derived polyphenols show 
signs of carcinogenity, especially in fetuses and neonates who do not 
detoxify the compounds in a sufficient way [100-102]. An association 
between high intake of tea during pregnancy and elevated risk of 
childhood malignant central nervous system (CNS) tumours has been 
found [103,104].

There are compounds that target Type II topoisomerase. These 
inhibitors are divided into two main classes: topoisomerase poisons, 
which target the topoisomerase-DNA complex, and topoisomerase 
inhibitors, which disrupt  catalytic turnover. Topoisomerase 
poisons include eukaryotic type II topoisomerase inhibitors (topo II) 
such as amsacrine, etoposide, etoposide phosphate, teniposide and 
doxorubicin. These drugs are anti-cancer therapies. Bacterial type II 
topoisomerase inhibitors (topo IV) include fluoroquinolones. These 
are antibacterials and include such fluoroquinolones, as ciprofloxacin. 
Some of these poisons encourage the forward cleavage reaction (e.g. 
fluoroquinolones), while other poisons prevent the re-ligation of 
DNA (e.g. etoposide and teniposide). In addition, the poisons of type 
IIA topoisomerases can target prokaryotic and eukaryotic enzymes, 
preferentially. Ciprofloxacin targets prokaryotes in excess of a 
thousand fold more than it targets eukaryotic topo II. The mechanism 
for this specificity is unknown, but drug-resistant mutants cluster in 
regions around the active site. Topo II inhibitors are inhibitors target 
the N-terminal ATPase domain of topo II, and prevent topo II from 
turning over. Examples of topoisomerase inhibitors include ICRF-193 
[105] that binds in a non-competitive manner and locks down the 
dimerization of the ATPase domain [106].

Conclusion
Enzyme inhibitors are molecules which reduce the enzymatic 

activity, and these inhibitors may include many drugs. There are 
different types of enzyme inhibitors, according to their structure and 
their site of action in the enzyme. In addition, completely different 
inhibition mechanisms may be operative in one enzyme inhibition. 
Studies with different enzymes and inhibition analyses are important, 
in order to clarify the structural requirements in the skeleton of the 
inhibitor.
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