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Introduction 
Circulating tumor cells (CTCs) have been reported to play an 

important role in the development of distance cancer micrometastases, 
and a potential role in characterizing genetic changes with tumor 
progression, but only recently, CTCs technology has matured to 
achieve acceptable reproducibility and sensitivity levels to explore 
clinical utility [1,2]. In disease monitoring, baseline CTCs count and 
cell characterization have shown promise as an early predictor of 
metastases [3,4], but since CTCs are found in very low concentration 
in blood (1-100 per mL) [5], large sample volumes (5-10 ml) are needed 
for meaningful enumeration impeding standard flow cytometry for 
analysis (due to low volumetric throughput) [6]. Latest technologies 
in microfluidic cytometry allow the analysis of several thousand 
particles per second, but this technology is still bounded to low 
throughput, which limits the device to either small volumes or long 
analysis times [7,8]. 

The issue of low throughput has been extensively studied to address 
the challenge of large volumes analyses in flow cytometry [9] including 
low cost Lab on a Chip CMOS or CCD-based multichannel detectors 
[10-12]. Mobile phones have also been proposed for cell enumeration 
and analysis [13-15], however the cameras in these phones are less 

versatile with their optical systems than webcams (e.g., inability to 
change lenses).

A high throughput microfluidic cytometer was recently developed 
using a wide field flow-flow cell instead of the conventional narrow 
hydrodynamic focusing cells used in traditional flow cytometry 
enabling analysis of large volumes at lower flow rates (challenging 
for standard flow cytometers) [16,17]. This wide-field flow cytometer 
adopts a technique used in Particle Image Velocimetry (PIV) known as 
“streak photography” where exposure times and flow velocities are set 
such that the particles are imaged as short “streaks” (Figure 1). Since 
streaks are imaged with large number of pixels, they should be easily 
distinguished from the noise which appears as “speckles” increasing 
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Abstract
Identification of Circulating Tumor Cells (CTCs) has shown promising clinical applications, but since CTCs 

are found in very low concentration in blood large sample volumes are needed for meaningful enumeration. This 
issue impedes the analysis of CTCs using standard flow cytometry due to its low throughput. To address this 
issue, a high throughput microfluidic cytometer was recently developed using a wide field flow- flow cell instead 
of the conventional narrow hydrodynamic focusing cells (used in traditional flow cytometry) enabling analysis of 
large volumes at lower flow rate. This wide-field flow cytometer adopts a technique known as “streak photography” 
where exposure times and flow velocities are set such that the particles are imaged as short “streaks”. Since 
streaks are imaged with large number of pixels, they are easily distinguished from the noise which appears as 
“speckles” increasing the detection capabilities of the device, making it more suitable for analysis using current low 
sensitivity, high noise webcams or mobile phone cameras. The non-stationary nature of the high noisy background 
found in streak cytometry introduces additional challenges for automated cell counting methods using traditional 
cell detection techniques such TLC, CellProfiler, CellTracker and other tools based in traditional edge detection 
(e.g., Canny based filters) or manual thresholding. In order to address this issue, we developed a new automated 
enumeration approach that does not rely on edge detection or manual thresholding of individual cells, rather is 
based in image quantizing, morphological operations, 2D order-statistic filtering and decisions rules that take into 
account knowledge of the structure and expected location of the streaks in consecutive frames. We evaluated our 
approach comparing it with two current methods representing the major computational modalities for cell detection: 
CellTrack (based in edge detection) and MTrack2 (based in manual thresholding). Samples of 1 cell/mL nominal 
concentration were analyzed in batch size of 30 mL at flow rate of 10 mL/min and imaged at 4 frames per second 
(fps), the files were saved in uncompressed AVI format files. The cells were annotated and the signal to noise ratio 
(SNR) was calculated. For samples with average SNR greater than 4.4 dB, our method achieved a sensitivity of 
91% compared to CellTrack (60%) and MTrack2 (71%). The True Positive Rate (TPR) of cells detected was 0.93 for 
our method compared with 0.80 for Mtrack2 and 0.29 for CellTrack. This demonstrated the ability of the algorithm to 
count rare cells with high accuracy for concentrations of 1 cell/mL with SNR greater than 4.4 dB. This cell counting 
capability will enable to automate low cost imaging flow cytometry based on CCD detector and the expansion of 
cell-based clinical diagnostics in resource-poor settings.
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the detection capabilities of the device, making it more suitable for 
analysis using current low sensitivity, high noise webcams or mobile 
phone cameras. In addition, since the images are taken at low speed the 
file size is reduced by a factor of 40 [16,17]. 

Advantages of the wide field streak cytometer are its low cost 
manufacturing, portability and it allows rapid enumeration at low 
cell concentration (e.g., less than 1 cell/ml), but it requires visual 
counting making the cell enumeration time-consuming and subjective, 
highlighting the need for an automated cell detection and tracking 
method. 

Cell detection and tracking is an important problem with 
numerous clinical applications and it has been the subject of intense 
study in recent years. Commercial and public domain software tools 
and methods for cell motion tracking haven intensively reviewed 
[15,16]. General purpose tools for cell analysis such as TLA (Time 
lapse Analyzer) [18], CellProfiler (Broad Institute) [19] and other more 
specialized cell tracking tools such as CellTrack [20], CellTracker [21] 
and others [22,23], provide a framework for image object-tracking 
based on traditional edge detection (e.g., Canny based filters) and 
segmentation methods, but faint moving streaks over a moving 
background present a challenge for these methods. Other tools such 
MTrack2 (ImageJ plugin) do not rely on edge detection, rather rely on 
manual image thresholding and size filtering for detection and tracking 
[24]. Since manual thresholding is pre-selected by the user based on the 
average cell intensity, faint cells in a high noise background (usually 
encountered in streak imaging cytometry) also present a challenge for 
these methods.

In previous work, we developed a computational framework to 
overcome the challenges of cell detection and enumeration for streak 
image cytometry [25]. Our approach does not rely on edge detection 
or manual thresholding of individual cells, rather is based in image 
quantizing, morphological operations, 2D order-statistic filtering and 
decision rules based in streak intensity, streak integrity and cell location 
for identification and tracking. In this paper, we perform a comparison 
of our method [25] against current tools for cell detection and tracking. 
The tools selected represent the two most effective/used methods for 
cell tracking: MTrack2 (based on manual thresholding) and CellTrack 
(based on edge detection).

Materials and Methods
Webcam-based flow cytometer

The webcam-based wide-field streak cytometer and the data used 
in this paper was reported in previous work [16,17]. Briefly, a green 

emission filter with center wavelength 535 nm and bandwidth 50 nm 
(Chroma Technology Corp., Rockingham, VT) was used for detecting 
fluorescent emission. For fluorescent excitation, a 1 W 450 nm laser 
was used (Hangzhou BrandNew Technology Co., Zhejiang, China). A 
Sony PlayStation® Eye webcam with resolution of 640 × 480 pixels with 
a max video frame rate of 120 fps, equipped with a c-mount CCTV 
lens (Pentax 12 mm f/1.2) was used as the photodetector. The webcam 
sensor was connected to a 32-bit Windows-based laptop computer 
via a USB2 port. The camera control software was used to set camera 
parameters (exposure time, frame rate, and gain) and to save video in 
uncompressed AVI format (Figure 2).

Cell SYTO-9: As described in previous work, fluorescently 
stained THP-1 human monocytes were used to simulate rare cells 
[16,17]. Briefly, cells were labeled with SYTO-9 dye added to 1 mL of 
suspended cells solution. After labeling, cells were diluted to a level 
of approximately 1 cell/μL (measured by microscopy). From this 
relatively high concentration, lower concentration 27 samples of 1 cell/
mL were generated by single-step dilution. Samples of cells at 1 cell/mL 
concentration were injected to the wide view flow cell in batch sizes of 
30 mL with flow rate set to 10 mL/min.

In-House methodology for streak detection and counting

The streak detection and tracking algorithm was reported in 
previous work [25] (for details of the algorithm refer to the Appendix). 
The algorithm is implemented in MATLAB R2014b and consists of 
three major procedures:

Streak detection: Streaks are defined as vertical elements that 
are expected to belong to cells. In this step we identify all potential 
streaks through thresholding using Otsu method [26] and noise 
reduction using a 2D order-statistic filter (please refer to procedure 
“ComputeStreakMask” in Appendix for more details). The final result 
of this procedure is a binary mask that contains vertical regions of the 
frame where there is a high likelihood of containing a cell.

Identifying candidate cells: The binary mask from the previous 
step is overlaid with the original image and each streak representing 
a potential cell is enclosed in a boundary box for further possessing. 
Features of the streaks such as area, centroid, orientation, etc. are 
computed for each streak. Using their centroid and orientation, streaks 
are partitioned into equivalent classes and identified as a candidate cell 
(equivalent streaks are defined as streaks that belong to the same cell). Figure 1: Image of a cell on streak mode cytometry.

Figure 2: Schematic of webcam-based wide-field flow cytometer – The flow 
cytometer consists of a sensing element, excitation source and flow cell. The 
sensing element consists of the internal elements of a webcam, a 12 mm f/1.2 
CCTV lens, two green emission filters, and a computer to collect and analyze 
data. The excitation source is a 450 nm 1 W laser module. 
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frames using a MATLAB application developed to assist with this 
task (Figure 4).

In order to facilitate the automatic evaluation of various cell 
detection/identification algorithms, we developed a MATLAB 
application for matching the detected cells to the ground truth cells. 
First, a complete weighted bipartite graph is built having as vertices 
all of the detected cells ‘D’ and all the ground–truth cells ‘T’ in all the 
video frames (Figure 5a), and edges between (D, T) with weight equal 
to the minimum (across all the frames where both cells appear) of the 
distance between the bounding boxes (in the same frame) of the cells 
corresponding to ‘D’ and ‘T’ (Figure 5b). Next, we remove all edges 
with weight above a user provided threshold, and replace the edge 
weights w(D, T) with wmax − w(D, T), where wmax is the maximum 
edge weight (Figure 5c). Finally, we compute a maximum weight 
matching in the resulting graph. 

Please refer to procedure “ComputeStreakAndCandidateCells” for 
more details). The final result of this step is the location of all candidate 
cells in different frames. 

Filtering out spurious cells and identifying true cells: The 
candidate cells identified in the previous steps are evaluated according 
to intensity and length to identify true cells and eliminate spurious cells 
(please refer to procedure “FilterSpuriousCells” in the Appendix for 
more details).

The parameters of our algorithm are fixed for all the samples at the 
same values.

Signal to noise ratio

As described in previous work [25] the SNR of a cell occurrence is 
computed from the intensity values of the pixels within its bounding 
box and a noise box. The noise box is the area consist of the 5 outer 
pixels of 12 pixel dilation of the bounding box (7 pixels away from the 
signal) (Figure 3). The signal consists of all the pixels enclosed within 
cell’s bounding box; this ensures that pixels associated with the cell are 
not used in estimating the background noise. The background noise is 
the average of the pixels in the noise rectangle. SNR was calculated as:

2
Signal Bkg

2
Noise

10 10SNR log − 
=   

 

σ
σ

Where Bkg = µNoise

Matching detected cells to ground truth cells

Ground truth cells were identified by manually reviewing each 
video file, and providing for each such cell the location and frame(s) 
in which it occurs. The cells were annotated while crossing the 

Figure 3: Schematic representation of the areas used to calculate SNR.

Figure 4: Two ground truth cells identified in the frame. The cells were 
annotated and X,Y coordinates (beginning and the end point of the cell) are 
recorded. 

 

               a                                                          b                                                            c 

Figure 5: (a) Complete weighted bipartite graph using the distance as weight. 
(b) Minimal weigh is used to match Detected and True cells. (c) Using a user 
defined threshold, all the weights above the threshold (in this case distance 
of 2) are removed and the matched cells are classified as TP, the unmatched 
true cells are classified as FN and the unmatched detected cells are classified 
as FP.

Figure 6: Screenshot of MTrack2 (right) and CellTrack (left) for the same 
frame. CellTrack partially detected the cell on the right, but miss a fainter cell on 
the left. MTrack2 did a better job detecting both cells. 

Figure 7: Scatterplot representing samples arranged by sensitivity for samples 
with SNR equal or greater than 4.41 dB comparing our in-house procedure with 
MTrack2 and CellTrack. Notice all the Blue circles (our method) are always 
above the 0.80 mark.
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This matching associates each detected cell with at most ground 
truth cell. Note that some detected cells may not be matched with any 
ground truth cell; in which case, we consider such detected cells as 
“false positives” (FP). Similarly, some ground truth cells may not be 
matched with any detected cell; in which case, we consider such ground 
truth cells as “false negatives” (FN). The matched detected cells are 
considered “true positives” (TP). 

Upon counting the FN, FP, and TP cells, we calculate the false 
positive rate (FPR), false negative rate (FNR), true positive rate (TPR) 
and sensitivity as showed below:

FPFPR =
FP + TP   	  

TPTPR
FP TP

=
+

FNFNR
FN TP

=
+         

TPSensitivity
FN TP

=
+

Performance of our In-House method compared with current 
methodology for cell tracking

We compare the performance of our method with CellTrack (edge 
detection method) and MTrack2 (standard thresholding method). 
We feed the same frame sequences to these tools and compared the 
results with our algorithm (Figure 6). CellTrack requires inputting 
the initial edge threshold and the edge linking threshold for efficient 
edge detection. We set the initial edge threshold between 30-60, and 
we set the edge linking threshold between 20-50 for all the samples. For 

ID FP FN TP GT FPR FNR TPR Sensitivity SNR
27 2 8 12 20 0.14 0.4 0.86 0.6 2.86
28 1 8 22 30 0.04 0.27 0.96 0.73 3.03
35 3 17 13 30 0.19 0.57 0.81 0.43 3.41
34 6 22 7 29 0.46 0.76 0.54 0.24 3.42
32 0 10 13 23 0 0.43 1 0.57 3.5
31 3 10 19 29 0.14 0.34 0.86 0.66 3.55
29 1 14 16 30 0.06 0.47 0.94 0.53 3.71
23 4 6 28 34 0.13 0.18 0.88 0.82 4.05
26 2 11 26 37 0.07 0.3 0.93 0.7 4.08
30 1 14 11 25 0.08 0.56 0.92 0.44 4.15
33 0 8 17 25 0 0.32 1 0.68 4.27
24 5 2 27 29 0.16 0.07 0.84 0.93 4.41
17 4 4 20 24 0.17 0.17 0.83 0.83 4.52
25 1 4 29 33 0.03 0.12 0.97 0.88 4.56
22 1 3 24 27 0.04 0.11 0.96 0.89 4.58
15 1 1 22 23 0.04 0.04 0.96 0.96 4.64
20 1 5 26 31 0.04 0.16 0.96 0.84 5.02
21 3 3 18 21 0.14 0.14 0.86 0.86 5.08
19 2 4 25 29 0.07 0.14 0.93 0.86 5.09
18 1 3 28 31 0.03 0.1 0.97 0.9 5.37
13 1 3 27 30 0.04 0.1 1.96 0.9 5.91
12 4 0 21 21 0.16 0 0.84 1 6.02
16 0 1 20 21 0 0.05 1 0.95 6.2
14 0 1 30 31 0 0.03 1 0.97 6.25
11 2 1 25 26 0.07 0.04 0.93 0.96 6.46
9 1 3 24 27 0.04 0.11 0.96 0.89 7.42

10 2 1 24 25 0.08 0.04 0.92 0.96 7.44

ID=cell number; FP=False Positive; FN= False negative; TP=True Positive; 
FPR False Positive Rate; FNR=False Negative Rate; TPR=True Positive Rate; 
GT=Ground Truth Cells. 
Table 1: Detection performance of our method. Samples sorted by the average 
SNR of their ground truth cells. 

ID FP FN TP GT FPR FNR TPR Sensitivity SNR
27 22 17 3 20 0.88 0.85 0.12 0.15 2.86
28 22 16 12 28 0.65 0.57 0.35 0.43 3.03
35 52 18 12 30 0.81 0.6 0.19 0.4 3.41
34 7 23 6 29 0.54 0.79 0.46 0.21 3.42
32 162 9 14 23 0.92 0.39 0.08 0.61 3.5
31 24 21 8 29 0.75 0.72 0.25 0.28 3.55
29 34 23 7 30 0.83 0.77 0.17 0.23 3.71
23 63 6 28 34 0.69 0.18 0.31 0.82 4.05
26 37 18 19 37 0.66 0.49 0.34 0.51 4.08
30 77 11 14 25 0.85 0.44 0.15 0.56 4.15
33 11 12 13 25 0.46 0.48 0.54 0.52 4.27
24 5 18 11 29 0.31 0.62 0.69 0.38 4.41
17 0 8 16 24 0 0.33 1 0.67 4.52
25 37 9 24 33 0.61 0.27 0.39 0.73 4.56
22 26 14 13 27 0.67 0.52 0.33 0.48 4.58
15 0 10 13 23 0 0.43 1 0.57 4.64
20 12 17 14 61 0.46 0.55 0.54 0.45 5.02
21 13 10 11 21 0.54 0.48 0.46 0.52 2.08
19 12 15 14 29 0.46 0.52 0.54 0.48 5.09
18 4 6 25 31 0.14 0.19 0.86 0.81 5.37
13 0 1 29 30 0 0.03 1 0.97 5.91
12 0 2 19 21 0 0.1 1 0.9 6.02
16 0 5 16 21 0 0.24 1 0.76 6.2
14 0 7 24 31 0 0.23 1 0.77 6.25
11 0 0 26 26 0 0 1 1 6.46
9 1 3 24 27 0.04 0.11 0.96 0.89 7.42

10 0 2 23 25 0 0.08 1 0.92 7.44

Table 2: MTrack2 results.

ID FP FN TP GT FPR FNR TPR Sensitivity SNR
27 29 15 5 20 0.85 0.75 0.15 0.25 2.86
28 99 27 1 28 0.99 0.96 0.01 0.04 3.03
35 34 24 6 30 0.85 0.8 0.15 0.2 3.41
34 50 23 6 29 0.89 0.79 0.11 0.21 3.42
32 11 22 1 23 0.92 0.96 0.08 0.04 3.5
31 19 21 8 29 0.7 0.72 0.3 0.28 3.55
29 29 16 14 30 0.67 0.53 0.33 0.47 3.71
23 23 23 11 34 0.68 0.68 0.32 0.32 4.05
26 40 18 19 37 0.68 0.49 0.32 0.51 4.08
30 33 16 9 25 0.79 0.64 0.21 0.36 4.15
33 21 21 4 25 0.84 0.84 0.16 0.16 4.27
24 47 22 7 29 0.87 0.76 0.13 0.24 4.41
17 50 6 18 24 0.74 0.25 0.26 0.75 4.52
25 39 3 20 33 0.66 0.39 0.34 0.61 4.56
22 62 24 3 27 0.95 0.89 0.05 0.11 4.58
15 73 10 13 23 0.5 0.43 0.15 0.57 4.64
20 70 15 16 31 0.81 0.48 0.19 0.52 5.02
21 91 8 13 21 0.88 0.38 0.13 0.62 5.08
19 44 12 17 29 0.72 0.41 0.28 0.59 5.09
18 37 22 9 31 0.8 0.71 0.2 0.29 5.37
13 26 14 16 30 0.62 0.47 0.38 0.53 5.91
12 73 8 13 21 0.85 0.38 0.15 0.62 6.02
16 36 10 11 21 0.77 0.48 0.23 0.52 6.2
14 60 2 29 31 0.67 0.06 0.33 0.94 6.25
11 26 3 23 26 0.53 0.12 0.47 0.88 6.46
9 6 3 24 27 0.2 0.11 0.8 0.89 7.42

10 14 1 24 25 0.37 0.04 0.63 0.96 7.44

Table 3: CellTrack results. 
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MTrack2, the threshold for detection was set between 140-150 and the 
minimal size object detected was 20 pixels.

Results 
Our algorithm along with Mtrack2 and CellTrack were evaluated 

in video files from all the 27 samples containing 1 cell/mL. Tables 1 and 
2 show the detection results of our algorithm, MTrack2 and CellTrack 
respectively as compared with the ground truth. The samples are 
ordered by the average Signal-to-Noise Ratio (SNR) of their ground 
truth cells. The SNR of a cell is the maximum of the SNR’s of all of its 
occurrences (Table 3). 

The average sensitivity for samples with SNR ≥ 4.4 dB, is 91% for 
our method, 71% for MTrack2 and 60% for CellTrack (Table 4), while 
across all samples is 78%, 59% and 46% for our method, MTrack2, and 
CellTrack respectively (Table 5).

Our algorithm performs better than CellTrack and MTrack2 for 
all the samples as well as the samples with SNR at least 4.4 dB. In 
addition, the average value for false positive and false negative rates 
were considerably smaller in our algorithm (0.07 and 0.09 respectively) 
compared with MTrack2 and CellTrack (Table 4). 

Considering all SNRs values across all samples, our algorithm also 
performed better than MTrack2 and CellTrack (Table 5). 

Figure 7 shows a scatterplot of all the samples (with NSR at least 
4.4 dB) arranged by the sensitivity achieved by the various methods. 

We can clearly see that our algorithm shows substantially better (and 
never worse) sensitivity for all the samples as compared with MTrack2 
and CellTrack.

Conclusion
Our algorithm performed better than current methods for cell 

detection and enumeration (average true positive rate of 93% TPR and 
sensitivity of 91%) in detection of cells in concentrations of 1 cell/ml for 
samples with SNR at least 4.4 dB. In comparison, current commonly-
-used edge detection or threshold based tools such CellTrack and 
MTrack2 did not performed well. CellTrack fails to detect faint moving 
streaks in the moving background producing a high false positive rate. 
MTrack2 performs better than CellTrack but still much worse than our 
method. 

Our method enables automation of the new imaging cytometry 
technique for rare cell detection. Wide field video imaging cytometry 
combined with cell streak imaging results in a simpler, affordable, and 
more portable flow cytometer, which facilitates the expansion of cell-
based clinical diagnostics, especially in resource-poor settings.

For samples with SNR lower than 4.4 dB, our algorithm was able 
to detect only ~58% of the true cells. Our algorithm for cell detection 
relies in part on the ability to differentiate cells from noise in each 
individual frame, therefore the algorithm performed poorly for very 
faint cells. In order to detect these faint cells other techniques based on 
recognition of pixel spatial patterns and expected location in the frame 
may be used. In future research we plan to develop a methodology for 
detecting rare cells with lower SNR values.

Appendix
Automated streak detection and counting algorithm

Streak detection and binary mask: The objective of this procedure 
is to create a binary mask with the location of all the streaks in the 
frames that potentially represent cells. The creation of the binary mask 
is achieved through the procedure I “ComputeStreakMask”. The major 
steps of this procedure (in MATLAB-like pseudocode) are given below.

Step 1: The 640 × 480 pixel frames are preprocessed by removing 
40 pixels in left and right margins to eliminate artifacts showed in the 
margins of the frame (Figure 8a).

Steps 2-3: The image intensity is adjusted by histogram equalization, 
then two thresholds values (of the image intensity) are selected using 
Otsu’s method quantizing the image into three levels (Figure 8b). 

Step 4: In order to fill small gaps along the boundary of foreground 
objects, a morphological close with a 3 × 2 pixels rectangle is slide across 
each frame. This procedure generates unwanted noise (Figure 8c), but 
the foreground objects (potential streaks) become more defined (no 
gaps along the boundary).

FPR FNR TPR Sensitivity
CellTrack 0.71 0.4 0.29 0.6
MTrack2 0.2 0.29 0.8 0.71
In-House 0.07 0.09 0.93 0.91

Table 4: Performance comparison of our algorithm versus MTrack2 and CellTrack 
for samples with (SNR ≥ 4.4 dB).

FPR FNR TPR Sensitivity
CellTrack 0.75 0.54 0.25 0.46
MTrack2 0.42 0.41 0.58 0.59
In-House 0.09 0.22 0.91 0.78

Table 5: In-house algorithm compared with MTrack2 and CellTrack (All SNRs 
values).

 

  (a)    (b)    (c) 

Figure 8: Frame processing from step 1 to 4 (Procedure I). Notice in (c), the 
streaks are hidden by high noise generated by the procedure to fill small gaps 
along the boundary of foreground objects.

 

(a)                                                (b)    (c) 

Figure 9: Step 5, 6, Procedure I. (a) resulting high noise image from the 
previous step. (b) 2D order filtering was used to reduce background noise and 
(c) the three-level image is converted to a binary image (c).
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The binary mask from the previous step is overlaid with the 
original image and the streaks representing potential cells are enclosed 
in boundary boxes for further possessing (Figure 11). The following 
features are computed for each streak: (a) area, (b) bounding box 
(centroid, height, and width), (c) major and minor axes length of 
enclosed ellipsoid, (d) eccentricity, (e) orientation, (f) perimeter, and 
(g) descriptive statistics (min, max, media, quantiles, variance, sum) 
of the values of the streak’s pixels. Most of these features are provide 
by the “regionprops” MATLAB command. Streaks (across all frames) 
are grouped and labeled as equivalent if they are expected to belong 
to the same cell, based on the displacement of their centroids within 
a tolerance level. The streaks that are in the same equivalence class are 
now identified as a candidate cell. For each candidate cell, we compute 
aggregates (min, max, mean, median, range, variance) of the features of 
its streaks. Note that in MATLAB’s image coordinate system, the x-axis 
(y-axis) runs along the image’s width (height), increasing from left-to-
right (top-to-bottom) with the (0, 0) point at the upper-and–left–most 
pixel. By the end of this step the streaks are annotated and candidate 
cells are identified for each frame.

Filtering out spurious cells and identifying true cells: The 
candidate cells identified in the previous steps are evaluated according 
to intensity and length. the goal of this procedure is to eliminate the 
cells with a low probability of being real cells. The major steps of this 
procedure are listed below (Procedure III).

 

Briefly, to eliminate spurious cells, we computed the 90th quantile 
of streak height and 75th quantile of the streak mean intensity and we 
eliminated all the streaks in the frame with height or mean intensity 
below these values (Figure 12).
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