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Abstract
Traditional medicinal plants are a large source of natural anticancer compounds that might serve as leads for 

the development of novel drugs. In recent years, the scientific community in the Western world has recognized the 
potential of natural products, used in Traditional Chinese Medicine (TCM). Since ancient times Japanese knotweed 
(Fallopia japonica), has been utilized in many TCM herbal preparations as anti-cancer agent. F. japonica (FJ) is 
known to produce a series of bioactive secondary metabolites, including anthraquinones, stilbens, tannins, lignans, 
anthocyanins, phenethyl alcohols, sterols, and essential oils. Resveratrol (a stilben) and emodin (an anthraquinone) are 
the major active ingredients of FJ. The anticancer activity of both compounds has various molecular modes of action 
and mechanisms through their ability to modulate the proliferation, apoptosis, cell cycle, growth factors, protein kinase C 
(PKC), NF-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling cascades. This review presents an 
overview of the secondary metabolites of F. japonica and anticancer activities of the extract and main active principles, 
resveratrol and emodin. The possible molecular targets and potential chemopreventive effects are discussed.
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Introduction
Traditional Chinese medicine (TCM, Zhong-Yi), has a long history 

of use, with extensive literature and clinical applications covering 
thousands of years [1,2]. It has been widely accepted that TCM has 
evolved over the millennia, with a battery of herbal materials to preserve 
health, as well as treat and prevent illnesses [3,4]. Over the past decades, 
TCM has been an area of intensive research aiming at developing new 
drugs for the ever-evolving diseases afflicting mankind [5]. Because the 
development of new chemical drugs remains time consuming, capital-
intensive and risky (i.e., a low rate of success), much more effort has 
been put into TCM for drug discovery. Now, TCM is a growing means 
of drug development in China. In 2007, China collected 3563 extracts, 
64,715 compositions, and 5000 single compounds from 3000 Chinese 
herbs, together with about 130 kinds of chemical drugs obtained from 
either TCM ingredients or their derivatives [6].

Fallopia japonica (Syn. F. japonica Houtt.) is a member of the 
Polygonaceae family (buckwheat). It is known as Japanese knotweed 
Pleuropteris zuccarinii, P. japonicum Meissn, Ronse Decraene (Syn. 
Reynoutria japonica Houtt.), and Polygonum zuccarinii Small [7,8]. The 
English names for Japanese knotweed include, Huzhang, fleeceflower, 
Hancock’s curse, elephant ears, donkey rhubarb, sally rhubarb, 
American bamboo, Japanese bamboo, and Mexican bamboo (though 
it is not actually a bamboo). Huzhang root extract is a TCM treatment. 
It is also known as, He Shou Wu, which is used as a blood tonic (herbal 
preparation). Japanese Knotweed is considered an invasive pest and is 
a commercial source of resveratrol.

Fallopia japonica (FJ) is a large perennial plant, native to eastern 
Asia in Japan, China and Korea, this species grows in vast areas 
throughout the northeastern USA into Canada and Europe, and it was 
introduced from Japan into the UK in the 19th century [9]. 

Historically, in 1777, Houttuyn as Reynoutria japonica described 
Japanese knotweed. Japanese knotweed stems have distinct raised 
nodes (appearance of bamboo). Stems are a reddish color and have a 
maximum height of 3–4 m (per growing season). The young stems have 
a flavor similar to mild rhubarb [10]. In some locations, semi-cultivated 

Japanese knotweed has been used for food production. Such populations 
can be controlled to prevent the invasion of sensitive wetland areas and 
driving out of the native vegetation. Morphological, leaves rang from 
triangular to heart-shaped, and are 7–14 cm long and 5–12 cm broad, 
and an entire margin [10]. The flowers are an attractive white color 
(July–August), and are considered an important source of nectar for 
honeybees; they yield a nice monofloral honey (bamboo honey, USA) 
(Figure 1) [11]. Knotweed flowers are mainly male sterile as reported 
in the UK and North America [12]. Japanese knotweed rhizomes with 
a distinctive orange interior can extend more than 15–20 m in length 
and 2 m in depth [10,13]. Fallopia japonica is highly able to produce 
series bioactive secondary metabolites including anthraquinones, 
stilbens, tannins, lignans, anthocyanins, phenethyl alcohols, sterols, 
and essential oils. Interestingly, resveratrol concentration in F. japonica 
is much higher than that reported in red wine, thus it is an important 
commercial source of resveratrol, and its scientific name is used in 
supplement labels. F. japonica also produces emodin. Emodin is used 
in traditional Chinese herbal medicine as a quality-control index for 
F. japonica. It has a wide range of pharmacological activities such as
anti-bacterial [14], anti-inflammatory [15] immunosuppressive [16],
and antitumor activity [17]. In addition, our LC-MS data suggests that
the quantity of emodin from total contents of methanolic extract of
F. japonica is about 30%. The medicinal importance of rhizomes of
Fallopia spp., have been reported, related to resveratrol and emodin

Journa
l o

f T
ra

di
tio

na
l Medicine & Clinical Naturopathy

ISSN: 2573-4555

Journal of 
Traditional Medicine & Clinical Naturopathy

J Tradit Med Clin Natur, an open access journal
ISSN: 2573-4555



Citation: El-Readi MZ, Eid SY, Al-Amodi HS, Wink M (2016) Fallopia japonica: Bioactive Secondary Metabolites and Molecular Mode of Anticancer. 
J Tradi Med Clin Natur 5: 193.  DOI: 10.4172/2573-4555.1000193

Page  2 of 20

Volume 5 • Issue 3 • 1000193

[18]. This review presents an overview of the chemical composition 
of F. japonica and anticancer activity of the extract and main active 
principles resveratrol and emodin. We highlight the possible molecular 
targets of their chemopreventive effect, and consider this herb and its 
active metabolites as novel dietary chemopreventive agents.

The use of Fallopia japonica in traditional medicine

Traditionally, F. japonica has been used in China, Korea, Taiwan, 
and Japan. The extract from the roots of F. japonica has been used 
in TCM as a natural laxative, and occasionally as food. It has been 
recorded that emodin has a mild laxative effect in doses of 20-50 mg 
per day. F. japonica is a concentrated source of emodin, and is used as 
a nutritional supplement to regulate the bowels motility. 

Therapeutically, the aerial parts, dried root, and rhizome of F. 
japonica are often used as analgesic, antipyretic, diuretic, and antitussive 
agents. It can also be used for the treatment of chronic bronchitis, 
infectious hepatitis, diarrhea, cancer, gallstone, hypertension, 
atherosclerosis, menoxenia, hyperlipidemia, leucorrhoea, pruritus 
vulvae of the dampness-heat type, mycotic trichomoniasis, bacterial 
vaginitis, dysmenorrhea, trauma with blood stasis, snake bites, skin 
burns, osteomyelitis and allergic inflammatory diseases [19-24]. 
Methanolic extract of the roots of F. japonica, is used to maintain oral 
health in Korea, it is shown to reduce the viability of Streptococcus 
mutans and Streptococcus sobrinus; and inhibit sucrose-dependent 
adherence, glucan formation, and glycolytic acid production [25].

Bioactive secondary metabolites of Fallopia japonica

Many chemical components have been reported from this plant 
(Table 1 and Figure 2). The roots of F. japonica has been reported 
to contain a large number of stilbens, frequently found as glycosides 
and sulfates, including resveratrol (trans-3,5,4’–trihydroxystilbene) 
(1), hydroxyresveratrol (2) resveratroloside (3), piceid (polydatin) 
(4), piceatannol or astringinin (5), piceatannol glucoside (6), trans-
resveratrol derivatives (7-13) and cis-resveratrol derivatives (14-18) 
[9,26-28]. Anthraquinones, including emodin and its derivatives (19-
21), anthraglycosides A (22) and B (23), physcion (24), chrysophanol 
(25), rhein (26), fallacinol (27), citreorosein (28), questin (29) and 
questinol (30), are important chemical constituents of the rhizome [18, 
29-31]. Additionally, phenol glycosides: Quercetin and its glycosides
(31-36), kaempferol-3-O-α-L-rhamnoside (37) and apigenin derivatives 
(38, 39) are found in its roots [32,33]. Furthermore, (−)-epicatechin-5-
O-β-D-glucopyranoside (40) [34], (+)-catechin (41) and its glucoside
(42) [35], cyanidin (43) [36], (−)-lyoniresinol-2a-sulfate (44) and
(+)-isolaricireinol-2a-sulfate (45), 1-(3’,5’-dihydroxyphenyl)-2-(4”-

hydroxyphenyl)-ethane-1,2-diol (44), gallic acid and derivative (47, 
48), tryptophan (49), 2,6-dihydroxybenzoic acid (50), tachioside 
(51), isotachioside (52) [35,37], 2-methoxy-6-acetyl-7-methyljuglone 
(53), protocatechuic acid (54), 2,5-dimethyl-7-hydroxy chromone 
(55), torachrysone-8-O-β-D-glucoside (56), 7-hydroxy-4-methoxy-
5-methylcoumarine (57), 1-(3-O-β-D-glucopyranosyl-4,5-
dihydroxyphenyl)-ethanone (58) [18], 5,7-dimethoxyphthalide (59) 
[38], and chlorogenic acid (60) [39] have been identified in F. japonica 
root. A total of 18 volatile compounds were identified in the extract of 
F. japonica leaves. The major volatile compounds found in the extract
of F. japonica leaves are 2-hexenal (61), 3-hexen-1-ol (62), n-hexanal,
1-penten-3-ol and 2-penten-1-ol [40-47].

General biological and pharmacological activities of extracts

Pharmacological studies have evaluated several aspects of FJ 
extract including antioxidant [48], anti-inflammatory activities. 
FJ has ability to inhibit NF-κB and neutrophil infiltration animal 
models of edema [49]. Water extracts and essential oil of FJ inhibited 
growth of several strains of MO and prevented the induction of 
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by 
lipopolysaccharide (LPS) [40]. 

F. japonica increases the burn’s healing through their ability to
enhancing the immune system in a dose-dependent manner [50]. 
Administration of F. japonica, the neutrophil levels, and neutrophilic 
adhesive rates remained normal in severely burned animals [51]. 
Moreover, F. japonica treatment maintained normal levels of TNF 
and adhesive leukocytes in burned rats [52]. Treatment of burn 
shock animals with F. japonica isolated substance leads to enhance 
the cardiac and microcirculatory functions (cardiac output, cardiac 
index, and stroke volume index) and decreases in the number of 
leukocytes [52-55].

Additionally, the EtOH extract of F. japonica possess antiviral 
activity against HBV [56], inhibiting several kinds of virus, which 
highly express the surface antigen of HBV (HBsAg) [57] and inhibit 
bacterial DNA primase [58].

Furthermore, F. japonica extracts protected the gastric mucosa from 
the harmful effect stress ulcers and decreased the gastric secretion [59]. 
In vitro and in vivo, the tannins of F. japonica decreased the activities 
of the digestive enzymes (trypsin, amylase, and lipase) [60,61]. F. 
japonica extracts inhibit acyl-co enzyme A–cholesterol acyltransferase 
activity [23]. F. japonica suppressed the activity of the CNS in mice 
[59]. Finally, the alcohol extract and compounds of F. japonica possess 
potent estrogenic activities [45,62].

Figure 1: Photographs (clockwise from left to right) of Japanese knotweed (Fallopia  japonica, Sieb. & Zucc.) invasive growth in riparian habitat inflorescence fruit, 
stem, and rhizomes.
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Figure 2: Chemical structures of isolated and identified substances from Fallopia  japonica.
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S. No. Compounds Reference
1 Resveratrol (trans-3,5,4’–tetrahydroxystilbene): R1=H, R2=H, R3=H R4=H [26,41]
2 Hydroxyresveratrol (trans-2,3,5,4’–tetrahydroxystilbene):R1=H, R2=OH, R3=H, R4=H [28,42]
3 Resveratroloside: R1=H, R2=H, R3=H, R4=Glu [26]
4 Piceid (polydatin): R1=Glu, R2=H, R3=H, R4=H [26]
5 Piceatannol or Astringinin (trans-3,4,3’,5’-tetrahydroxystilbene): R1=H, R2=H, R3=OH, R4=H [28,42]
6 Piceatannol glucoside: R1=H, R2=H, R3=OH, R4=Glu [9]
7 Sodium and potassium trans-resveratrol-3-O-β-D-glucopyranoside-6''-sulfate: R1=SO3M, R2=H, R3=H, R4=H, R5=H [27]
8 Sodium and potassium trans-resveratrol-3-O-β-D-glucopyranoside-4''-sulfate:  R1=H, R2=SO3M, R3=H, R4=H, R5=H [27]
9 Sodium and potassium trans-resveratrol-3-O-β-D-glucopyranoside-2"-sulfate:  R1=H, R2=H, R3=SO3M, R4=H, R5=H [27]

10 Sodium and potassium trans-resveratrol-3-O-β-D-glucopyranoside-4'-sulfate:  R1=H, R2=H, R3=H, R4=SO3M, R5=H [27]
11 Sodium and potassium trans-resveratrol-3-O-β-D-glucopyranoside-5-sulfate:  R1=H, R2=H, R3=H, R4=H, R5=SO3M, M=K+ or Na+ [27]
12 2''-O-Galloylpiceid: R1=H, R2=H, R3=3,4,5-trihydroxybenzoyl, R4=H, R5=H [43]
13 6''-O-Galloylpiceid: R1=3,4,5-trihydroxybenzoyl, R2=H, R3=H, R4=H, R5=H [43]
14 Sodium and potassium cis-resveratrol-3-O-β-D-glucopyranoside-6"-sulfate:  R1=SO3M, R2=H, R3=H, R4=H, R5=H [27]
15 Sodium and potassium cis-resveratrol-3-O-β-D-glucopyranoside-4"-sulfate:  R1=H, R2=SO3M, R3=H, R4=H, R5=H [27]
16 Sodium and potassium cis-resveratrol-3-O-β-D-glucopyranoside-3"-sulfate:  R1=H, R2=H, R3=SO3M, R4=H, R5=H [27]
17 Sodium and potassium cis-resveratrol-3-O-β-D-glucopyranoside-2"-sulfate: R1=H, R2=H, R3=H, R4=SO3M, R5=H [27]
18 Sodium and potassium cis-resveratrol-3-O-β-D-glucopyranoside-5-sulfate: R1=H, R2=H, R3=H, R4=H, R5=SO3M, M=K+ or Na+ [27]
19 Emodin: R1=H, R2=CH3, R3=OH, R4=H [44]
20 Emodin-8-O-β-D-glucopyranoside: R1=H, R2=CH3, R3=OH, R4=Glu [44]
21 Emodin-8-O-β-D-(6'-O-malonyl)-glucoside: R1=H, R2=CH3, R3=OH, R4=(6'-O-malonyl)-Glu [33]
22 Anthraglycosides B: R1=Glu, R2=CH3, R3=OH, R4=H [45]
23 Anthraglycosides A: R1=Glu, R2=CH3, R3=OCH3, R4=H [29]
24 Physcion: R1=H, R2=CH3, R3=OCH3, R4=H [44]
25 Chrysophanol: R1=H, R2=CH3, R3=H, R4=H [46]
26 Rhein: R1=H, R2=COOH, R3=H, R4=H [33]
27 Fallacinol: R1=H, R2=CH2OH, R3=OCH3, R4=H [18]
28 Citreorosein: R1=H, R2=CH2OH, R3=OH, R4=H [18]
29 Questin: R1=H, R2=CH3, R3=OH, R4=CH3 [18]
30 Questinol: R1=H, R2=CH2OH, R3=OH, R4=CH3 [18]
31 Hyperin: R=3-O-β-D-Gal [33]
32 Avicularin: R=3-O-α-L-Ara [33]
33 Reynoutrin: R=3-O-Xyl [33]
34 Isoquercitrin (quercetin-3-glucoside): R=3-O-β-D-Glu [33]
35 Quercetin-3-glucuronide: R=3-O-β-D-Glc [33]
36 Quercitrin (quercetin-3-rhamnoside): R=3-O-α-L-Rha [33]
37 Kaempferol-3-O-α-L-rhamnoside: R1=O-Rha, R2=H [33]
38 Apiin (apigenin-7-O-[-β-D-Apiofuranosyl-(1→2)-β-D-glucopyranoside]): R1=H, R2=Apio-(1→2)-Glu [33]
39 Apigenin-7-O-β-D-glucoside: R1=H, R2=Glu [33]
40 (−)-Epicatechin-5-O-β-D-glucopyranoside [47]
41 (+)-Catechin: R=H [35,47]
42 (+)-Catechin-5-O-β-D-glucopyranoside: R=Glu [35]
43 Cyanidin (3,3',4',5,7-pentahydroxyflavylium) [36]
44 Sodium (−)-lyoniresinol-2a-sulfate [35]
45 Sodium (+)-isolaricireinol-2a-sulfate [35]
46 1-(3',5'-Dihydroxyphenyl)-2-(4"-hydroxyphenyl)-ethane-1,2-diol [35]
47 Sodium 3,4-dihydroxy-5-methoxybenzoic acid methyl ester-4-sulfate:  R1=Me, R2=Me, R3=SO3Na [35]
48 Gallic acid: R1=H, R2=H, R3=H [35]
49 Tryptophan [35]
50 2,6-Dihydroxybenzoic acid [35]
51 Tachioside [37,47]
52 Isotachioside [37,47]
53 2-Methoxy-6-acetyl-7-methyljuglone [18]
54 Protocatechuic acid [18]
55 2,5-Dimethyl-7-hydroxy chromone [18]
56 Torachrysone-8-O-β-D-glucoside [18]
57 7-Hydroxy-4-methoxy-5-methylcoumarine [18]
58 1-(3-O-β-D-Glucopyranosyl-4,5-dihydroxyphenyl)-ethanone [35]
59 5,7-Dimethoxyphthalide [37,47]
60 Chlorogenic acid [37,47]
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Anticancer and Chemopreventive Properties
Several environmental carcinogens, inflammatory agents, and 

tumor promoters activated tumorigenesis process. These carcinogens 
are known to modulate the transcription factors (e.g., NF-κB, AP-1, 
p53), anti-apoptotic proteins (e.g., Bcl-2, Bcl-XL, Mcl-2), proapoptotic 
proteins (e.g., caspases, PARP), protein kinases (e.g., IκK, EGFR, 
HER2, JNK, MAPK), cell cycle proteins (e.g., cyclins, cyclin-dependent 
kinases), cell adhesion molecules, ABC-transporters proteins (e.g., 
MDR1, BCRP, MRP), metabolic enzymes (e.g., CYP1A1, CYP3A4, 
GST), COX-2, and growth factor signaling pathways [63]. The use of 
traditional medicine plants is widespread and provides a large source 
of natural anticancer compounds that might serve as leads for the 
development of novel drugs. Therefore, there is much interest from 
investigations of natural anticancer and bioactive compounds for 
preservation of traditional medicines. The use of naturally occurring 
products has been a major focus for a long period due to their potential 
chemotherapeutic activity. Extract of F. japonica is used in nutraceutical 
products because its resveratrol and emodin content. Both compounds 
have shown antitumor, antimetastatic, chemopreventive, chemical 
carcinogenesis-inhibitive, oncogene signal transduction-inhibitive and 
immunomodulating properties. Extensive pharmacological studies 
have shown that resveratrol and emodin contribute to the traditional 
efficacy of F. japonica. The molecular targets of chemopreventive 
activity of resveratrol and emodin are summarized in Figure 3.

Inhibition of cancer cell growth 

The extracts of F. japonica inhibited proliferation and induced 
apoptosis of many cancer cells for example on 0.2 mg/mL concentration 
in human lung cancer (A549 and H1650) cell lines [64] but not 
cytotoxic effect on the normal human liver cells [65]. Additionally, 
methanolic extract of F. japonica was highly effective in multiple 
oral cancer cell lines due to its inhibitory effect on cell proliferation 
in KB, HEp-2, and YD-15 cells. Sp 1 protein is an important target of 
anticancer drugs development because its expression is very high in 
several cancer cell lines and solid tumor. F. japonica induced apoptosis, 
and reduced the expression level of Sp1 protein (transcriptional level) 
in HEp-2 and YD-15 cells and decreased Sp1 promoter activity [66-
70]. Furthermore, ethyle acetate extract and its fractions exhibited 
anti-proliferative activities in KB cells differentially more than aqueous 
extract, dependent on the amount of emodin [71]. However, it has 
been reported that methanolic extract of F. japonica increases cell 
proliferation in breast cancer cell lines MCF-7 (at 30 and 100 µg/mL) 
because its estrogenic activity [45]. 

Resveratrol, a stilbene contained in F. japonica extract, has been 
reported as a biologically active compound. Resveratrol exhibited 
anti-proliferative effects through various molecular mechanisms 
on different cancer cells [72-78]. These anti-proliferative effects of 
resveratrol is mainly because its interaction with replication enzymes 
e.g. DNA polymerase and ribonucleotide reductase (by scavenge the
essential tyrosyl radical) [79,80]. Resveratrol also possesses inhibitory
effects on each stages of carcinogenesis process (initiation, promotion,
and progression [81].

Since the clinical use of two anthraquinones, mitoxantrone 
and daunorubicin, for cancer treatment began 25 years ago, 
anthraquinones and anthraquinone derivatives, such as emodin from 

F. japonica, have been reported to possess anticancer activity [82,83].
These anthraquinones are usually potent inhibitors of topoisomerase
II in DNA, and some also induce apoptosis in cancer cells [84].
Anthraquinones target DNA damage by mutation, their intercalation
action usually leads to frame-shift mutations. This mutation leads to
change in the amino acid sequence of a protein, influences promoters,
and other regulatory sequences in gene code, resulting in cell death
[85,86]. Emodin has been reported to inhibit proliferation in breast, lung, 
cervical, colorectal, and prostate cancers cells in vitro [87-91]. Emodin
has been reported to exhibit anti-proliferative effects in lung, breast and 
pancreatic cancer and sensitize these cells to chemotherapeutic agents
mainly by inhibiting HER-2/neu overexpression [92-96]. Relevant to
its antiproliferative effects, emodin is also known to inhibit tyrosine
phosphorylation of protein tyrosine kinases, p56lck and HER-2/neu
[44]. Emodin also displays an over 25-fold differential cytotoxicity
against ras transformed bronchial epithelial cells to the normal human
bronchial epithelial cells [90]. By studying the SAR of emodin and
comparing its activity to another anthraquiniones found that the
C1 and C3 position of emodin structure is important for anti-tumor
function (Figure 2) [97].

However, emodin evokes less or no cytotoxic effect in several 
normal cells, including: HBL-100 cells derived from normal human 
breast tissue, human fibroblast like lung WI-38 cells, and three primary 
cultured normal rat cells [98]. These data suggest that cancer cells more 
sensitive to emodin-induced cytotoxicity than normal cells. Emodin’s 
specificity towards malignant cells might be due to its targeting on 
some oncogene signaling transductions, which are constitutively active 
or amplified in cancer cells. We demonstrated the potential of cytotoxic 
effect of FJ extract related to emodin, which showed significant 
cytotoxicity more than resveratrol or polydatin on five different cell 
lines including MDR and sensitive cells.

Inhibition of cytochrome P450 and other metabolic enzymes 
(anti-initiation or anti-xenobiotic effects)

The function of most cytochrome P450 superfamily (CYP) enzymes 
is to catalyze the oxidation of organic substances. The substrates 
of CYP enzymes include metabolic intermediates such as lipids and 
steroidal hormones, as well as xenobiotic substances such as drugs 
and other toxic chemicals like those found in smoking and gasoline. 
CYPs are the major metabolic enzymes involved in drug bioactivation 
or detoxification, representing for ∼75% of the total metabolism. They 
are catalyzed by cytochromes P450 is a monooxygenase reaction. For 
example, monoxygenase (cytochromes P450 1A1, 1A2 and 1B1) can 
insert one oxygen atom into an organic substrate (RH) while the other 
oxygen is reduced [99]. Inhibiting the monooxygenation reaction is the 
molecular target of anticancer activity of natural plant SMs. 

F. japonica antimutagenicity is believed to cause the inhibitory
action of resveratrol, and emodin on CYP1A1. Resveratrol, by very 
different mechanisms of action displays numerous properties. However, 
its anti-initiation effects are related to its anti-xenobiotic abilities 
through Phase I cytochromes and Phase II detoxifying enzymes (Figure 
4). The aryl hydrocarbon receptor (AhR) is modulated the carcinogen 
activation pathway by activation of CYP1A1 and CYP1A2 enzymes in 
microsomes. Different carcinogens are targeted by certain CYP: The 
classic hydrocarbon carcinogen; 7,12-dimethyl-benz(a)anthracene 
(DMBA) is activated by CYP1A1, CYP1A2, and CYP1B1 enzymes. For 

61 The major volatile compound 2-hexenal (74.27%) and [40]
62 3-hexen-1-ol (8.11%) [40]

Table 1: Names of isolated and identified substances from Fallopia japonica.
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example, tobacco smoke is a core problem in at least eight different 
kinds of cancer because it contains high amounts of aryl hydrocarbon 
and dioxin receptor (AhR) ligands such as anthracenes and benzo(a)
pyrene (BaP) [100]. The mutagenesis caused by peroxidative strand 
breakage or covalent adduct formation of DNA is considered a major 
mechanism in tobacco-related carcinogenesis. Adduct formation is 
essentially caused by monooxygenases, which catalyzed oxidation of 
tobacco smoke compounds (inert molecules) e.g. BaP into diol-epoxy 
derivatives (highly mutagenic) (Figure 4). Consequently, free radicals 
responsible for oxidative DNA damage are released [101]. BaP itself 
is an agonistic ligand of the AhR, the principal inducer of CYP1A 
transcription.

Resveratrol is a competitive antagonist for AhR and blocks the 
conversion of the AhR forms (cytosolic ligand bound ◊ nuclear DNA-
binding) resulting in inhibition of AhR-mediated transactivation of 
CYP genes. In addition, resveratrol inhibit the interaction between 
AhR and the transcriptional complex and subsequent free radical 
production, leading to cellular and DNA damage [102-104]. Resveratrol 
is also directly inhibited CYP1A1 and CYP1A2 human liver cells in 
dose dependent manner [105,106]. Moreover, resveratrol is inhibitor 
of CYP3A4 (irreversible) and of CYP2E1 (noncompetitive reversible) 

[106]. It has been demonstrated that the inhibitory effects of resveratrol 
on substrate-oxidation reaction that catalyzed by CYP3A4 and CYP3A5 
is depend on the time and NADPH concentration [107,108]. 

Chen et al. reported that the resveratrol has therapeutically effect 
on hypercholesterolaemia. They demonstrated significant decreasing 
in the level of all parameters of lipid profile in mice that fed with a 
hypercholesterolaemic diet and resveratrol (200 mg/kg/day) for 8 
weeks [109]. The underlying mechanism of the anti-dyslipidaemic 
effect of resveratrol is the ability of resveratrol to modulate the enzyme 
expression and activity of cholesterol 7a-hydroxylase (CYP7A1). 
CYP7A1 has an important role in conversion of cholesterol into 
7-ahydroxycholesterol and subsequently eliminated from plasma and
excreted as cholic acid in bile [109].

The anti-inflammatory role of resveratrol in humans via down-
regulating proinflammatory conditions or by inhibiting LDL oxidation 
need more studies. Previously studies were designed in triple-blind, 
randomised, placebo-controlled trial in 75 patients consuming 
resveratrol-enriched grape extract, grape extract alone, or placebo 
for at least 6 months. Resveratrol-enriched grape extract induced a 
significant decrease in the low-density lipoprotein (LDL) cholesterol, 
apoB, oxidised LDL and oxidized LDL/apoB ratio compared 

Figure 3: The major’s chemopreventive targets of resveratrol and emodin.

J Tradit Med Clin Natur, an open access journal
ISSN: 2573-4555



Citation: El-Readi MZ, Eid SY, Al-Amodi HS, Wink M (2016) Fallopia japonica: Bioactive Secondary Metabolites and Molecular Mode of Anticancer. 
J Tradi Med Clin Natur 5: 193.  DOI: 10.4172/2573-4555.1000193

Page  7 of 20

Volume 5 • Issue 3 • 1000193

with placebo and grape extract groups [110,111] Considering the 
homogenous consumption of statins by all individuals enrolled in the 
three groups, these data revealed impressive results: Resveratrol reduces 
hypercholesterolaemia, and, more importantly, it reduces the overall 
burden of oxidation of lipids and thus can be safely administrating in 
the primary prevention of cardiovascular disease in association with 
statins [112].

Emodin can also suppress the mutagenicity of carcinogens that 
are metabolically activated by this enzyme, like heterocyclic amines 
(food carcinogens) i.g indole type (Trp-P-2), quinoline type (2-amino-
3-methylimidazo[4,5-f] quinoline) and the pyridine type (2-amino-1-
methyle-6-phenylimidazo[4,5-b]pyridine) [113]. This may means that
the chemical structure of emodin is responsible for the destroying effects 
on CYP1A1 and CYP1A3 protein [114]. In addition, emodin produced 
oxidative stress, which resulted in extreme down-regulation of CYP
protein expression as reported in previous studies. Anthraquinone
inhibited incorporation of amino acids to protein in mouse neoplastic
cells [115,116].

Moreover, emodin effect on rat liver microsomes exhibits 
phosphorylation CYP1A1 protein (inactive) and inhibition of 
monooxygenase activity (CYP1A1-dependent) [117,118]. Therefore, 
the direct interaction of hydroxyanthraquinone and CYPs leads to 
inhibition of monooxygenase activity (Figure 4). However, Wang et al. 

reported that emodin has the ability to induce CYP1A1 and CYP1B1 
in human lung cancer cells at both gene (mRNA) and protein levels 
[119]. Binding of the emodin to an aryl hydrocarbon (Ah) receptor, a 
transcriptional factor of CYP1A1 and CYP1B1 genes are the possible 
mechanism involved [120]. Emodin also increases monooxygenase 
activities by benzo[a]pyrene and 7-ethoxyresorufin, which are 
substrates of CYP1A1 and CYP1B1 [121,122]. We demonstrated that 
F. japonica, and its active SMs; resveratrol, emodin, and polydatin
significantly inhibit CYP3A4 in dose dependent manner and suppress
gene expression (data unpublished), suggesting the predominately F.
japonica extract inhibition of CYP3A4 related to resveratrol effect as
CYP3A4 inhibitor.

Glutathione-S-transferase (GST) is a phase II metabolic enzyme. It 
is involved in carcinogenesis and resistance of cancer cells to oxidative 
stress and chemotherapeutic drugs. In vitro and in vivo, resveratrol 
has been shown to induce phase II of metabolism; detoxification 
enzymes mainly UDP-glucuronosyltransferase (UGT), glutathione-
S-transferase (GST), and quinone reductase activities through
modulation of the mitogen-activated protein kinase (MAPK) pathway
[123,124]. It is capable of metabolically detoxifying drug/carcinogens,
thus Phase II metabolic enzymes exert antimutagenic action [125]. On
the other hand, emodin decreases TNF-α and TPA-induced GSTP1-
1 gene expression through inhibiting NF-κB and AP-1 binding onto
GSTP1-1 promoter in K562 and U937 leukemia cells [126]. This could

Figure 4: Metabolism of benzo[a]pyrene procarcinogenes (smoking) by action of metabolic enzymes; CYP1A1, CYP3A4 and GST. FJ active SMs, resveratrol and 
emodin have inhibitory effects on CYPs and enhance the GST activity; thus through stopping this initiation step of carcinogen metabolism there is a chemopreventive 
effect (Adapted from Wang and Samet [102]).
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contribute to a reduction of incidences of glutathione-related drug 
resistance in human cancers.

Inhibition of COX-2 (anti-promotion effects)

Cyclooxygenase (COX) is an enzyme that is responsible for the 
formation of important biological mediators called prostanoids, 
including prostaglandins, prostacyclin, and thromboxane. 
Lipooxygenase (LOX) enzyme is responsible for formation of leukotrines. 
The inflammation process is mainly related to the activities of COX-
2 and lipooxygenase (LOX) enzymes. Pharmacological inhibition of 
COX can provide relief from the symptoms of inflammation and pain. 
Non-steroidal anti-inflammatory drugs (e.g aspirin and ibuprofen), 
target inhibition of COX. The ability of resveratrol to inhibit the NF-
κB pathway (IκB kinase inhibition) is linked to its chemopreventive 
activity [127]. The transcription nuclear factor kappa B (NF-κB) and 
activated protein-1 (AP-1) regulate the action of these enzymes. These 
compounds enhance tumor growth by acting on cell proliferation, 
angiogenesis, and immunosuppression (Figure 5). Cyclooxygenases 
inhibitors are considered valuable therapeutic agents against cancer 
[128]. Resveratrol has a chemopreventive effect on various cancer 
models unrelated to AhR activation and xenobiotic metabolism. 
Resveratrol inhibits the constitutive cyclooxygenase-1 (COX-1) but 
not the inducible COX-2 and inhibits COX-2 activity as well as COX-2 
gene expression, which is important in promoting tumorigenesis [129-
131]. Down regulation of the COX-2 gene is resulting in the inhibition 
of protein kinase C (PKC) [129]. 

Recent, emodin studies show potent dose dependent inhibition of 
COX-2 and NO• through its direct inhibition of iNOS enzyme activity, 

and suppression of iNOS protein without affecting macrophage 
viability and causing 65–68% reduction of oedema volume at 40 
mg/kg [132,133]. In addition, emodin is a potent inhibitor of LPS-
induced NO production and iNOS gene expression. The mechanisms 
of inhibition of iNOS by emodin is inhibited NF-κB activation [134]. 
Moreover, expression of iNOS and the COX-2 protein was inhibited 
by emodin in LPS-activated RAW 264.7 cells, and PGE2 production 
was reduced [135]. These results indicate that emodin can prevent the 
initiation stage of cancer through its ability to inhibition of COX-2 and 
inflammatory mediators (Figure 5).

Inhibition of multidrug resistance proteins

Multidrug resistance is the phenomenon of tumor resistance to 
chemically and functionally unrelated anticancer drugs, and is the one 
of the most formidable challenges in the field of cancer chemotherapy. 
The first mediator of MDR to be characterized at the molecular level 
was P-glycoprotein (P-gp/MDR1 or ABCB1), and there were many 
ATP-binding cassette (ABC) proteins including MRP1, and BCRP 
involved in MDR [136,137]. ABC-transporters mediate resistance to 
different classes of chemotherapeutic drugs including: vinblastine, 
vincristine, daunorubicin, doxorubicn, colchicine, paclitaxel, and 
etoposide, by actively extruding the drugs from the cells to lower the 
intracellular concentrations. Actually, there are few studies dealing 
with modulation of MDR with F. japonica and its active metabolites. 
Recent studies reported that, resveratrol has inhibitory effects on P-gp 
efflux function and increased the accumulation of P-gp substrates 
(rhodamine 123 and daunorubicin) in a concentration-dependent 
in KB-C2 cells [138]. In addition, resveratrol down-regulated Bcl-
2 and MDR1 genes and hence synergistically enhance the cytotoxic 

Figure 5: Fallopia  japonica active SMs, resveratrol and emodin effects on steps of eicosanoids biosynthesis.
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effect of combined chemotherapeutic agents leading to overcome the 
multidrug-resistant of KBv200 cells. Resveratrol can reverse multidrug 
resistance in KBv200 cells. The potential mechanism may be by 
inhibiting the multidrug-resistant gene expressions and/or promoting 
cell apoptosis [139]. 

Resveratrol also induced apoptotic death in doxorubicin-resistant 
AML cells, and it was shown to inhibit the efflux function and 
expression of an MRP1 gene [140]. Moreover, resveratrol can enhance 
the sensitivity of CNE2 cells to chemotherapeutic drugs under hypoxia. 
The potential mechanism is partly attributed to inhibiting the gene 
expressions of HIF-1 alpha, MDR1 and MRP1 [141].

On the other hand, co-treatment with emodin could remarkably 
enhance chemosensitivity of SGC996 cells when compared to cisplatin, 
carboplatin or oxaliplatin treatment alone. The mechanisms may be 
attributed to reduction of glutathione levels, and downregulation of 
multidrug resistance-related protein 1 (MRP1) expression in SGC996 
cells. Furthermore, in vivo experiments on mice show that emodin/
cisplatin co-treatment decreased the tumor size by increasing apoptosis 
and down regulating MRP1 expression [142]. In addition, emodin/
cisplatin co-treatment increases ROS level and enhanced sensitivity 
of resistance cells, as compared to cisplatin-only treatment with 
little effect on normal cells. Emodin/cisplatin co-treatment inhibited 
the tumor growth in vivo by down regulated MDR1 expression and 
increased drug accumulation [143].

We evaluated the effect of F. japonica and its active principle 
resveratrol, emodin, and polydatin on MDR colon and leukemia cell 
lines and we found that the tested substance and extract show significant 
inhibition of efflux function and down regulation of MDR1, MRP1, 
and BCRP genes. Moreover, the effect of co-treatment of the MDR 
cell lines with FJ extract, or its active compounds with doxorubicin, 
remarkably enhance the chemosenstivity of resistance cells, especially 
leukemia cell lines. 

Induction of apoptosis (anti-progression effects) 

Apoptosis is a programed cell death, which is a fundamental 
process in the developmental and homeostatic maintenance of 
complex biological systems. A disregulation or failure of normal 
apoptotic processes will contribute to transformation of cells and 
provide a growth advantage to cancer cells. Apoptosis is characterized 
by cell shrinkage, chromatin condensation, DNA fragmentation, and 
the activation of specific cysteine proteases known as caspases. There 
are two pathways mediated by caspase-3; extrinsic pathway (receptor- 
and caspase-8–mediated) and the intrinsic pathway (mitochondrial 
release of cytochrome c and activation of caspase-9) [144]. Apoptosis 
and necrosis are distinguished by the initiation of cell death from the 
outside and inside the cell (mitochondria), respectively [145]. 

Many studies has concerned the apoptotic effect of F. japonica and 
its active SMs. Lin et al. reported that A549 cells treated with F. japonica 
extracts showed chromatin condensation, nuclear fragmentation, and 
vacuolization of cytoplasm. In addition, FJ methanolic extract induced 
apoptosis by PARP cleavage and the activation of caspase 3 (64). Ex vivo 
and in vivo studies have confirmed the apoptotic effect of resveratrol 
[146]. In numerous cell types, resveratrol has been observed inducing 
apoptosis through different pathways (Figure 6) [147-149].

Anti-leukemic activity in mice and human cell lines of resveratrol 
by inducing apoptosis [150] however, resveratrol has not any apoptotic 
effects on normal cell even at higher concentrations [151,152]. 
Resveratrol has been shown to induce apoptosis by activating death 

receptors (Fas and TNF) pathways [147,148,153]. This extrinsic 
pathway activates intracellular caspases (effectors mediators), thus the 
apoptotic effects of resveratrol cytotoxicity block by caspase inhibitors.

On the other hand, apoptosis could be a potential general 
mechanism, providing a mechanistic basis for the antiproliferative 
and anti-neoplastic effects of emodin (Figure 6). A number of studies 
have demonstrated that emodin is capable of inducing apoptotic 
cell death in various cancer cells through both mechanisms [94,154-
157]. Emodin is activated the caspase-3 cascade independent or 
dependent on ROS [158]. Emodin (quinone structure) is highly redox 
active molecules can form semiquinone radicals and reactive oxygen 
species (superoxide anion radical, hydrogen peroxide, and hydroxyl 
radical). The generation of ROS may contribute to mitochondrial 
damage, reduction of mitochondrial transmembrane potential, release 
of cytochrome c and Smac, and subsequent caspase activation and 
apoptosis [159].

Suppression of anti-apoptotic proteins 

The therapeutic value of chemotherapeutic agents is largely 
dependent on their ability to trigger the anti-apoptotic molecules. 
The Bcl-2 protein family contains anti-apoptotic (Bcl-2, Bcl-XL, 
and Mcl-1) and proapoptotic (Bax, Bak) proteins and they are well-
characterized regulators of apoptosis. F. japonica active SM; resveratrol 
and emodin, trigger Bcl-2 and Bax modulation, mitochondrial 
dysfunction, mitochondrial cytochome c release, caspase activation 
and consequently leads to apoptosis (Figure 6) [149,155,156,160-163]. 

Direct caspase inhibitors are participants in different survival 
signaling pathways, the inhibitors of apoptosis protein (IAP) family 
such as XIAP (X-linked inhibitor of apoptosis) and surviving are 
important to the control of drug resistance and cell proliferation 
in different cancer types [164-166]. F. japonica methanolic extract, 
resveratrol, and emodin decreased expression of XIAP and survivin 
mRNA, protein, and its transactivation, suggesting that F. japonica 
inhibits survivin expression through the down-regulation of Sp1 to 
induce apoptosis in several cancer cells [71,167]. Surprisingly, survivin 
expression induced by gemcitabine could be inhibited when combined 
with emodin treatment [93]. Its downstream target, surviving, mediates 
apoptoitc cell death, indicating that the inhibitory effects of F. japonica 
and its franctions on oral cancer cell proliferation are due to emodin in 
F. japonica [71].

Cell Cycle Arrest
The cell cycle, or cell-division cycle, is a series of events that takes 

place in a cell leading to its division and duplication (replication). 
In eukaryotes, the cell cycle can be divided into two brief periods: 
interphase (during which the cell grows, accumulating nutrients 
needed for mitosis and duplicating its DNA) and the mitosis (M) phase 
(during which the cell splits itself into two distinct cells, often called 
“daughter cells”). The cell cycle consists of four distinct phases: G1 
phase, S phase (synthesis), G2 phase (collectively known as interphase) 
and M phase (mitosis). Activation of each phase is dependent on the 
proper progression and completion of the previous one. Cells that have 
temporarily or reversibly stopped dividing are said to have entered a 
state of quiescence called G0 phase. A dysregulation of the cell cycle 
components may lead to tumor formation. Cells contain various 
pathways designed to protect them from the genomic instability, 
or toxicity that can result when their DNA is damaged. Checkpoint 
proteins that control the normal passage of cells through the cell 
cycle play a pivotal role in this response. There are several cell cycle 
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checkpoints, which are used by the cell to monitor and regulate the 
progress of the cell cycle [168]. The two main checkpoints are the G1/S 
checkpoint (rate-limiting step and restriction point) and the G2/M 
checkpoint [169]. Tumor cells frequently loose checkpoint controls 
and this facilitates the development of the tumor [170]. Thus, one of 
the important approaches for cancer chemotherapy is to regulate cell-
cycle progression [169]. 

Resveratrol produces a differentiation of human promyelocytic 
cells (HL-60 line) and decreases tumor growth in rat models [146,171]. 
The effect of resveratrol on cell cycle arrest (G2/M transition and G0/
G1 phase) gradually decreases the anti-apoptotic oncoprotein Bcl-
2 expression and subsequently undergoes apoptosis [172,173]. In 
addition, resveratrol induces antiproliferation and arrests the S phase 
at low concentrations (30-60 µM), but high concentrations do not 

induce S phase accumulation in human histiocytic lymphoma U937 
cells. Removal of resveratrol from the culture medium stimulates U937 
cells to reenter the cell cycle synchronously, as judged by the expression 
patterns of cyclin E, A and by fluorescent activated cell sorting analysis 
[174]. This data demonstrates that resveratrol causes S phase arrest and 
reversible cell cycle arrest. Thus, resveratrol provides an important new 
cell cycle blocker as well as a cancer chemopreventive agent. Hsieh et al. 
found that resveratrol suppress of cell growth through cell cycle arrest 
at S- and G2-phases [72,175]. 

On the other hand, the effect of the main FJ anthraquinone, emodin, 
on the G2/M cell cycle has been demonstrated on various cancer cells, 
including v-ras-transformed and hepatoma cells [90,98]. Elevations 
of p53 and p21 expression were suggested as a common mechanism 
involved in this induced G2/M cell-cycle arrest [98]. Similarly, G1/S 

�� m

Figure 6: FJ active SMs; resveratrol and emodin induced apoptosis in cancer cells either via a receptor-mediated pathway regulated apoptosis genes expression. 
FJ active SMs; resveratrol and emodin regulated cell-cycle genes (cyclins, Cdks, and p53). Extrinsic pathway (independently of p53), the ligands (TNFL and FasL) 
activate the pro-apoptotic receptors (TNF and Fas) leads to the recruitment of the adaptor Fas-associated death domain (FADD) and initiator procaspases 8 and 10 
to rapidly form the death-inducing signaling complex (DISC). Procaspase 8 and 10 are self-cleaved, and activated caspase 8 and 10 activate the effector caspases 
3, 6, and 7, thus triggering apoptosis. The down regulation of antiapoptotic proteins (Bcl-xL and Mcl-1) plus significant upregualtion of proapoptotic (Bax, Apaf-1, Bid 
and tBid. tBid) are other effective target. 
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cell-cycle arrest was found in human breast, colon carcinoma cells 
upon treatment with emodin [88,176].

G2/M phase arrest was observed with increased protein levels in the 
cell cycle regulatory genes; cyclin A, cyclin B, Chk2, Cdk2, and P27 and 
decreased protein levels in Cdc25c and P21 in hepatoma cells; Huh7, 
Hep3B, and HepG2 after time courses of emodin treatment [177]. 
Furthermore, treatment of cancer cells with various concentrations 
of emodin led to cell cycle arrest at G0/G1 and G2/M increased the 
Bax, p21, and Chk2 expression but inhibited Bcl-2, cyclin B1 and Cdc2 
[163]. 

Apoptosis in HL-60 cells was efficiently induced by emodin in a dose 
dependent manner and cells were arrested at G0/G1. The expressions 
of Akt, p-Akt, IκB-α, p- IκB-α, p65, p-p65, mTOR and p-mTOR in 
Akt signal pathway was downregulated after emodin treatment [178]. 
However, G0/G1 phase cell population increased and G2/M phase cells 
decreased in HL-60/ADR cells after treatment with emodin [179]. 

Transcription factor pathway

The transcription factor is a protein that binds to specific DNA 
sequences, thereby controlling the transcription of genetic information 
from DNA to mRNA [180]. Transcription factors perform this 
function alone, or with other proteins in a complex, by promoting 
(as an activator), or blocking (as a repressor) the recruitment of 
RNA polymerase to specific genes [181]. Many transcription factors, 
especially some that are oncogenes or tumor suppressors, help regulate 
the cell cycle. Due to their important roles in development, intercellular 
signaling, and cell cycle, some human diseases have been associated 
with mutations in transcription factors [182]. Many transcription 
factors are either tumor suppressors or oncogenes, and, thus, mutations 
or aberrant regulations of them is associated with cancer. 

NF-κB transcription factors

NF-κB (nuclear factor kappa-light-chain-enhancer of activated 
B cells) is a protein complex that controls the transcription of DNA. 
Conversely, the modulation of NF-κB has been impact role in cancer 
development. Active form of NF-κB increase the expression of 
genes that responsible on cell proliferation, cell survival and prevent 
apoptosis. Apoptosis is increased by deficiency in NF-κB expression 
due to its regulates the anti-apoptotic genes and caspases [183]. 

In cancer cells there is NF-κB in active form because mutations 
in genes encoding the NF-κB transcription factors themselves or in 
IκB genes that control NF-κB activity. Inhibition of NF-κB in tumor 
cells leads to prevent the proliferation and stop the cell resistance to the 
anti-tumor agents. Thus, NF-κB has much interest in drug discovery 
research as a target for anti-cancer agents [184]. Block of NF-κB is 
considered as an important target for many natural products that 
have been discovered to use as anti-oxidants, anti-cancer, and anti-
inflammatory agents [185]. Thus, NF-κB is considered as one of the 
main molecular targets of chemopreventive phytochemicals (Figure 
7), as a transcription factor involved in multiple cellular processes, 
including cytokine gene expression, cellular adhesion, apoptosis, 
and metastasis [186]. Free radicals, inflammatory stimuli, cytokines, 
carcinogens, tumor promoters, endotoxins, g-radiation, ultraviolet 
(UV) light, and X-rays, activate NF-κB. In nucleus, active NF-κB 
induces >200 genes that have a role in suppress apoptosis and induce 
cellular transformation, proliferation, invasion, metastasis, chemo-
resistance, radio-resistance, and inflammation. 

Resveratrol and emodin mediate the anti-inflammatory, cell 
growth modulatory and anticarcinogenic effects may be by block 

any one or more steps in the NF-κB signaling pathway, such as the 
signals that activate the NF-κB signaling cascade, translocation of 
NF-κB into the nucleus, DNA binding of the dimers, or interactions 
with the basal transcriptional machinery [187,188]. Resveratrol 
suppressed TNF-induced phosphorylation of the p65 subunit, induced 
oncogenic H-Ras that blockaded of IκB kinase activity, and blocked the 
expression of mRNA-encoding monocyte chemoattractant protein-1 
of NF-κB and NF-κB-dependent reporter gene transcription [127,188-
190]. Therefore, the NF-κB suppression that targeted by resveratrol is 
essential for induction the cell cycle arrest and apoptosis in cancer cells. 

Emodin has similar immunosuppressive and anti-inflammatory 
effects. Many researchers are interested in how emodin may regulate 
NF-κB signaling pathways. Kumar et al. reported that emodin inhibits 
NF-κB activation induced by TNF. This inhibition is not due to its 
chemical modification of NF-κB subunits, but its suppressive effect 
of degradation of IκB, an inhibitory subunit of NF-κB molecules 
[159]. In addition, down-regulation of IκK-γ, which is essential in 
phosphorylating IκB-α by emodin treatment lead to subsequently 
inhibit NF-κB [191]. Protein tyrosine kinases (PTK), reactive oxygen 
species, proteases IκKs, RIP, NIK, TRAF-2 play a critical role in 
regulating NF-κB activation [192]. Moreover, there is a positive 
association between cellular ROS and cytotoxic efficacy of anti-cancer 
drugs, and NF-κB is involved in this relationship [193-195]. 

On the other hand, manipulation of cellular redox state and 
NF-κB activation may initiate a novel approach to improving 
chemotherapeutic efficacy [196,197]. TNF-induced NF-κB activation, 
ΙκB degradation, ROS generation, mitochondrial- and caspase-
dependent apoptosis pathways are mediated by treatment of human 
cancer cells by emodin [20,155,156,159]. Emodin inhibiting AP-1 and 
NF-κB signaling pathways lead to suppressing MMP-9 expression and 
inhibits the invasiveness of cancer [198].

Tumor Suppressor Gene p53

Tumor suppressor gene p53 is an important molecule in the 
process of apoptosis and cell cycle arrest. Many tumor cells evade 
apoptosis and cell-cycle arrest via mutation of p53. In response to 
stress stimuli, such as DNA damage, p53 is stabilized, which leads to 
its nuclear translocation and transactivation of many target genes (e.g., 
p21, Bax, CD95). In certain cells, activation of p53 leads to activation 
of p21 (tumor suppressor gene) which inhibits the cyclin-cdk complex, 
cell cycle arrest (G1 phase) and apoptosis (Figure 7).

There are many studies reported the role of p53 in resveratrol-
induced apoptosis [199-201]. Resveratrol increased expression of p53 
and suppression of cell progression through the S- and G2-phases of 
the cell cycle [175]. 

In addition, resveratrol modulate the cell cycle regulating genes 
(e.g. cyclins, Cdks, p53, and hyperphosphorylated Rb) leads to a 
reversible cell arrest (S phase) of the vascular smooth muscle cell 
(VSMC) [202]. Narayanan et al. reported that resveratrol down-
regulated PSA, androgen receptor (AR) co-activator ARA 24, and NF-
κB p65 in androgen sensitive prostate cancer cells (LNCaP). The down-
regulation of these genes related with activation of p53-responsive 
genes (e.g. PIG 7, p21 Cip1/WAF1, p300/CBP, and Apaf-1) [75,200].

On the other hand, the modulation of p53 and p21 pathway is the 
underlining mechanism of anti-proliferative effects of emodin [203]. 
In addition, emodin induced accumulation of p53 in HepG2/C3A 
cells with a resultant increase in p21 expression and cell cycle arrest 
[98]. This action might be through emodin’s inhibitory effect on the 
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COP9 signalosome (CSN) associated kinases CK2 and PKD [204,205]. 
CSN is a multimeric protein kinases complex associated with CK2 and 
PKD, which can be phosphorylate p53, and subsequently degrade by 
the Ub/26S proteasome system [206]. Moreover, there is a positive 
association between cellular ROS and cytotoxic efficacy of anti-cancer 
drugs [194,195]. 

Reactive oxygen species that initiated the ATM-p53-Bax signaling 
pathway considered as mode of emodin action to induce apoptosis in 
human lung adenocarcinoma A549 cells [94]. Furthermore, Emodin 
increased the protein levels of p53 as response to reactive oxygen 
species (ROS) production in a dose-dependent manner [207]. In 
addition, the change in the expression of p53 pathway is associated with 
IGF-2 pathway leads to apoptosis in BCap-37 cells that treated [208]. 
Emodin induced apoptosis in the C6, HepG2/C3A, prostate LNCaP, 
and vascular smooth muscle cells by decreased the expression of AR 
and PSA, increased of Bax/Bcl-2 ratio, and increased the expression of 
p53, p21, Fas, caspase-3 and -9 [98,209,210].

Suppression Protein Kinases

A protein kinase is a kinase enzyme that modifies other proteins 
by chemically adding phosphate groups to them (phosphorylation). 
Phosphorylation usually results in a functional change of the target 
protein (substrate) by changing enzyme activity, cellular location, or 
association with other proteins. The human genome contains about 
500 protein kinase genes and they constitute about 2% of all human 
genes. Up to 30% of all human proteins may be modified by kinase 
activity, and kinases are known to regulate the majority of cellular 
pathways, especially those involved in signal transduction [211].

The human protein kinase family is divided into the following 
groups: AGC kinases (e.g., PKA, PKC and PKG protein kinases); 
the calcium/calmodulin-dependent protein kinases (CAMK); CK1-
the casein kinase 1 group (CMGC) (e.g., CDK, MAPK, GSK3 and 
CLK kinases); the homologs of yeast Sterile 7, Sterile 11, and Sterile 
20 kinases (STE); the tyrosine kinases (TK); and the tyrosine-kinase 
like group of kinases (TKL) [211]. The MAPK pathway has received 
increasing attention as a target molecule for cancer. In addition, Rb and 
the E2F transcription factors regulate cell cycle (G1/S-phase). Tumor 
suppressor protein p16 is a member of the cyclin-dependent kinase 4 
(CDK4 or INK4) inhibitor protein families (Figure 7). It functionally 
competes with cyclin-D for association with cyclin-dependent kinase 
4/6 (CDK4/6) and keeping CDK4/6 inactive. The cyclin-D/CDK4 
complex is known to phosphorylate the retinoblastoma (Rb) protein at 
mid-G1 phase, which is thought to be a critical step in the progression 
through G1 into S-phase of the cell cycle [212]. The Rb-E2F/DP 
pathway is an important contributor to resveratrol-mediated cell 
cycle arrest and apoptosis [213]. It has been reported that resveratrol 
inhibits phosphorylation of Rb, down-regulation of expression of E2F 
transcription factors, and induces of the Cdk inhibitor (p21Cip1/
WAF1) resulted in cell cycle arrest (S-phase and G1/S-phase) in cancer 
cells [190,213]. Furthermore, in hormone-insensitive DU145 prostate 
cancer cells, resveratrol modulated mitogen-activated protein kinase 
[MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2)], and 
stimulated c-fos and c-jun expression [214].

Emodin was found to act similarly to antiestrogens, capable of 
inhibiting estrogen-stimulated growth and DNA synthesis, and the 
phosphorylation of Rb protein [96]. In addition, there is high synergy 
of As/IFN-α with emodin treatment with regard to the inhibition of 
proliferation and induction of cell death of HTLV-I–transformed T 
cells. There is a potent antiproliferative effect on tumor cells, which 

was linked to the accumulation of hypophosphorylated Rb and G0/G1 
arrest. Emodin reduces the level of phosphorylated Rb and induces G1 
cell-cycle arrest in HTLV-I–transformed cells [157]. 

Protein kinase CKII has essential role in cell proliferation, 
transformation, and differentiation process [215,216]. Unlike most 
of the Ser/Thr protein kinases, whose substrates contain consensus 
sequences generally determined by basic and prolyl residues, substrates 
of CKII share unique phosphoacceptor sites specified by clusters of 
acidic residues [215,216]. Yim et al., reported that emodin is specific 
inhibitor of CKII. They unexpectedly found that emodin acts as a 
competitive inhibitor of CKII with respect to ATP, with an IC50 value 
of 2 mM [217]. 

Structurally, emodin fit to penetrate and coupling with the active 
site of CKIIa, block the ATP binding as well as it close the hydrophobic 
pocket between the N-terminal and the C-terminal lobes. This leads 
to its inhibition of the binding of the natural co-substrates of CKII, 
in a competitive manner [218]. The importance of hydroxyl group 3 
in anchoring emodin with CKII through polar interactions is further 
proven by the observation that the two analogues of emodin, 1,8- 
dihydroxy-anthraquinone and chrysophanic acid, both lacking this 
group, did not show obvious inhibitory effect on CKII activity [219].

 In addition to protein kinase CKII, emodin also shows an 
inhibitory effect on some other kinases. Among them, emodin acts as 
a modest inhibitor of PKC [217,220]. The mitogen-activated protein 
kinase (MAPK) signaling pathways play a central role in regulating cell 
proliferation, apoptosis, and migration [221]. The MAPK members 
consist of three major classes; the c-jun N-terminal kinases (JNKs), the 
extracellular signal-regulated proteins kinase (ERKs) and p38 (Figure 
7) [198,222].

Growth factors pathway

Growth factors are proteins that bind to receptors on the cell 
surface, with the primary result of activating cellular proliferation 
and/or differentiation. Some of the growth factors implicated in 
carcinogenesis are: epidermal growth factor (EGF), platelet-derived 
growth factor (PDGF), fibroblast growth factors (FGFs), transforming 
growth factors (TGF)-α and -β, erythropoietin (Epo), insulin-like 
growth factor (IGF), interleukin (IL)-1, 2, 6, 8, tumor necrosis factor 
(TNF), interferon-γ (INF-γ) and colony-stimulating factors (CSFs) 
(Figure 7) [223]. Resveratrol modulates growth factors (e.g. EGF, 
TGF-α, TGF-β, and FJ) lead to decrease in cell migration, adhesion, 
and stop the cell proliferation in much cancer cell line [224-228]. 
Furthermore, resveratrol exhibited activation of mitogen-activated 
protein kinase [MAPK, extracellular signal-regulated kinase 1/2 
(ERK1/2)], nuclear translocation of Ser15-phosphorylated p53, and 
p53-dependent apoptosis and stimulated c-fos and c-jun expression in 
hormone-insensitive DU145 prostate cancer cells. 

On the other hand, emodin decreased the level of LIGHT-induced 
generation of ROS, as well as the expression of CCR1, CCR2, and 
ICAM-1 and the production of IL-8, MCP-1, TNF-alpha, IL-6, IκB-
alpha, and the phosphorylation of the p38 MAPK [229]. In addition, 
emodin induces gene expression profiling changes in p53, JAK2/
STAT3, and IGF-2 pathways lead to mitochondrial induction of 
apoptosis in myeloma and BCap-37 cells [208,230]. 

In vitro, emodin stimulated VEGF-α, inhibited basic fibroblast 
growth factor-induced proliferation and migration dose-dependently 
in human umbilical vein endothelial cells (HUVECs). It suppress 
cyclin D1 and E expression (G0/G1 arrest) and retinoblastoma protein 
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Figure 7: Overview of the molecular mechanisms pathway involved in cancer.

phosphorylation inhibits proliferation, migration of HUVECs (231). 
In vivo, emodin strongly suppresses VEGF-α-induced angiogenesis 
through inhibition of phosphorylation of KDR/Flk-1 of the Matrigel 
plug in mice [231]. In addition, inhibition of phosphatidylinositol 

3-kinase (PI3K) is considered as molecular target of emodin that leads
to inhibition of EGF-induced migration in various human cancer cell
lines [232]. In addition, treatment of EC cell with emodin inhibits
expression of ICAM-1, ELAM-1, and VCAM-1 [159].
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Anti-metastasis

The high mortality rates associated with cancer are caused by the 
metastatic spread of tumor cells from the original site. There are at 
least four inter-related biological events required for tumor metastasis: 
Angiogenesis, cell adhesion, cell invasion (extracellular matrix 
degradation and cell migration), and cell proliferation. Angiogenesis 
is a process of blood vessel formation, it is plays an important role in 
cell growth. Tumor angiogenesis actually starts with cancerous tumor 
cells releasing molecules that send signals to surrounding normal host 
tissue. These signaling upregulated different genes in the host tissue 
that, in turn, make proteins to encourage growth of new blood vessels. 
More than a dozen different proteins (e.g., FGF, EGF, GC-SF, IL-8, 
PDEGF, TGFα, TNF, VEGF), as well as several smaller molecules (e.g., 
adenosine, PGE), have been identified as angiogenic factors released by 
tumors as signals for angiogenesis. Among these molecules, VEGF and 
βFGF appear to be the most important for sustaining tumor growth 
(Figure 7). VEGF and βFGF are produced by many kinds of cancer cells 
and by certain types of normal cells. Chemopreventive phytochemicals; 
resveratrol, and emodin have been found to target these pathways 
[233].

Resveratrol effects on angiogenesis have been studied [175,233-
243]. Lin et al. reported that resveratrol suppressed the angiogenesis 
process that induced by VEGF in human umbilical vein endothelial 
cells [238]. Resveratrol suppressed of MMP-9 mRNA expression and 
PMA-mediated activation of JNK and PKC-α [234]. Bruder et al. 
reported the disruption of ROS dependent Src kinase activation is the 
underlying mechanism of the inhibition of VEGF-induced angiogenesis 
by resveratrol [237]. Resveratrol upregulated tissue type plasminogen 
activator (tPA) and urokinase-type plasminogen activator (uPA) gene 
transcription in endothelial cells [239,240]. 

Similarly, one critical aspect of the anti-cancer activity of emodin is 
its inhibitory effect on cancer metastasis. Emodin potentially interferes 
with tumor metastasis progression at several pivotal points. Cell surface 
adhesion proteins (ICAM-1, VCAM-1, and ELAM-1) that regulated by 
NF-κB are inhibited by emodin [159,244]. The cholesterol content in 
membrane of cancer cells is higher than normal cells. Emodin decrease 
cholesterol content in cell membrane and disrupt the lipid rafts-
associated integrin-signaling pathway [245]. Emodin inhibits EGF-
induced cell migration in various cancer cells [232]. Emodin inhibits 
the PI3K-mediated Cdc42 and Rac1 activation and suppresses the p21-
activated kinase (PAK) complex [232]. Similar to resveratrol, emodin 
inhibits MMP-9, AP-1 and NF-κB signaling pathways resulting in 
inhibit the invasiveness cancer cells [198,246-248]. 

Conclusion
From above mention studies that described in this review, we can 

conclude the traditional use of Fallopia japonica in many anticancer 
formulas relates to its ability to produce active SMs, especially resveratrol 
and emodin. F. japonica active SMs, resveratrol and emodin, have great 
potential in the prevention and therapy of a wide variety of tumors. F. 
japonica active SMs, resveratrol and emodin have antiproliferative effects 
through the induction of apoptosis in various cell lines: leukemia and 
breast, prostate, colon, pancreas, hepatic carcinomas. Lastly, resveratrol 
and emodin have potential for treating inflammatory disorders other than 
cancer; through their action as antiinflammatory, they can effect in different 
molecular targets, which are involved in chemotherapy approaches. To 
conclude, F. japonica should be considered for used in cancer therapy due 
to its SMs multifactoral effect; large scales clinical studies of the extract 
should be encouraged.
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