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Abstract
Fines migration can cause severe damage to formation permeability and can plug the formation under certain 

circumstances. To effectively address this address, the mechanisms of fines migration and factors that causing fines 
migration were analyzed in this study. Different treatment techniques were discussed in this paper and the newly 
application of UTTA has been very successful in most formation types. The films it forms can enhance the ability of 
formation to withstand high shear stress and high flow rate. Lab core flow tests demonstrated this positive effects and 
it can greatly minimize the side effect of acidizing treatments, as a post-treatment method.
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Introduction
In the pore spaces of sandstone reservoirs, the very small loose 

solid particles are slowly incorporated into the sand grain in a long 
geologic time [1]. They particles are usually called formation fines and 
they are mainly classified into two basic categories: clays and non-
clays particles. The non-clay particles can be quartz, amorphous silica, 
feldspars, zeolites, carbonates, salts and micas. Additionally, those 
formation fines can be incorporated into formation during drilling or 
completion operations. They can be part of the sandstone formation by 
other means as well. In the realm of formation damage, fines have been 
widely to be considered one of the main formation damage problems. 
Because they are loose in nature and cannot be placed in place or be 
bound together with sand grains physically by cementing materials 
[2-5]. Under certain circumstances, those formation fines, initially 
located in the interior surface of formation matrix, will migrate along 
flowing fluids in the formation. Along the flowing path, they are easily 
accumulated in the restriction points of the pore throat. Upon reaching 
certain concentration [6], those restriction points will prevent further 
flowing of fluids. Severe plugging occurs and thus considerably reduces 
the permeability of formation permeability. In this paper, various causes 
of fines migration were discussed firstly and then the treatment methods 
of fines migration were presented. The application of newly ultra-thin 
trackifying agent (UTTA) was addressed in details [7-9]. UTTA was 
especially helpful in controlling high rate-producing or injection wells. 
It can also be used as a post-treatment following the application of acid 
fracturing or matrix acidizing. Commercial service companies have 
developed and applied UTTA very successfully in recent years. This 
paper discussed the mechanisms of UTTA and experimental data and 
field cases were present for better understanding [10].

Mechanisms of Fines Migration
Dynamics of fines migration can be ruled by many factors. It can 

be governed by mineralogy and permeability of the rock, salinity of 
the water (either injected or produced water), pH value, or even by the 
drag forces, which is a combination effect of flow velocity, turbulence 
and fluid viscosity [10-15]. Figure 1 shows a typical scenario of fines 
migration. Fines accumulated in the pore throat area and caused 
severe permeability damage to the formation. There are essential 
three steps in the process of fines migration: presence of fines in the 
formation, breaking mechanism to cause fines to break apart, and 
trapping mechanisms to hold fines in place. Trapping can occur as a 
result of bridging, ionic attraction, or wettability effect. To observe the 
problems of fines migration, various techniques can be applied, such 

as production curve analysis, back flow test or core flow testing to 
evaluate the critical velocity and water sensitivity [16,17].

Factors Causing Fines Migration
There are various factors that can cause fines migration. The main 

factors are high flow rate, wettability effect, ion exchange, two phase 
flow, and acidizing effect, etc. The following sections discussed the 
factors in details.

High flow rate

Specially, each formation has a unique critical flow rate when fines 
migration occurs. The drag force applied to a fine particle can be affected 
by magnitude flow rate, oil viscosity and gas turbulence. Sometimes in 
well production when choke size was not designed properly, sudden 
increase in flow rate occurred and a flow shock was applied to fine 
particles and the result is probably the problem of fines migration [18]. 
Whereas fines can also be shocked in work over operations when well 
is turned on and off repeatedly. Fines migration will occur as far as 
the flow rate is above the critical velocity, especially for the particles 

Figure 1: Fines migration in the pore throat area causing the plug of flow path.
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of kaolinite, illite or non-clay fines. Kaolinite is more easily to be 
mobilized because of its booklet morphology structure [19-23].

Wettability

Wettability of the formation, fluids phases, and flow rate affect the 
movement of particles in the pore system. Fines tend to flow depending 
on their wettability when water is being injected or produced [24-26]. 
Figure 2 shows the effect of wettability on fines migration. The left 
scenario shows that fines will only move with the flow of water as 
water-wet fines are attracted and immersed in the envelop of water. 
While on the right side, fully or partially oil-wet clay particles are in oil 
phase and tend to easily migrated with oil flow and severe formation 
damage can occur.

Ion exchange
Studies have shown that clay particles become unstable as a result 

of expansion of lattice space of a clay particle, at smaller than 20 g/l of 
NaCl or equivalent of interstitial fluid [27,28]. Clay particles are more 
easily deflocculated and dispersed at salinities of below 1.0 g/l. The 
negative charge nature of clay particles will attract positive ions to align 
them around the clay plate. Cations within clay lattice will trade places 
with cations in water solution. The cations in clay lattice are initially 
in equilibrium with those in surrounding water. As a result of salinity 
change, cations exchanged occur and then can cause clay particles to 
break apart or swell depending on the circumstances. The permeability 
of formation can be severely damaged as a result of salinity change. 
This phenomenon can be demonstrated by water shocking experiment.

Increase of pH value
Once pH value increases dramatically, it will dissolve silica cement 

to cause more fines and the result can be fines migration [29,30]. The 
sources for increase of pH value can be from injected mud filtrates, 
cements or work over fluids or from decrease salinity of in-situ fluids. 
Lab tests show that generally pH of more than 7 tends to cause fines 
migration while no disturbance has been observed with pH value of 
below 4.

Two phase flow
In the presence of two phase flow, fines tend to migrate because 

fines are normally water wet and water can easily carry those fines. 
Turbulence in multiphase flow will make this problem more severe and 
the critical velocity is usually small in two phase flow. All those factors 
will cause fines easily to migrate in two phase flow.

Matrix acidizing

Acidizing treatments can de-consolidation of the fines and the 

excessive dissolution of cementing materials will generate considerably 
amounts of fines [31]. Under some circumstances, acidizing will not 
increase the permeability of the formation, instead causing more 
damage to formation permeability as a result of fines migration. In the 
near wellbore zone, local wellbore collapse can occur and release of 
fines will cause more damage.

Treatments of Fines Migration
There are various techniques to address the problems of fines 

migration. Traditional means are by using retarded HF system, 
enlargement of pore throat, or application of organosilane additive. 
In recent years, the application of UTTA has been proved to be very 
successful in addressing fines migration problems [32].

Retarded HF systems

Under most circumstances, fines migration occurred deep in the 
formation and any chemical solution must be designed to be functioning 
retarded as far from the wellbore as possible. Over the past years, three 
typical retarded HF Systems have been developed [8]. They are systems 
using the boron ion, systems using the aluminum ion, systems using 
the phosphorous containing complex. All those systems will produce 
hydrated silica precipitation in contact with clays. The type I should 
not be used in the formation containing illite or K-feldspar as it has 
no reaction with quartz. Type III has the highest dissolving power of 
silica and clays among those three. It can keep dissolving products in 
solution without precipitation [33].

Pore throat enlargement

As has been discussion above, acidizing treatments have the negative 
effects of fines migration by simply dissolving cementing materials 
or creating more fines in the formation. In other ways, acidizing can 
also enlarge the size of pore throats, especially the critical pore throat 
size [9]. In this case, an easier flow pathway is created and it is easier 
for fines to exit out of the formation. Studies show that fines will not 
bridge near the pore throat if the average pore size of the formation is 
greater than the critical range (1/7 to 1/3 of the size of average fine). By 
applying the relationship that pore diameter is equal to the square root 
of permeability in microns, the following Table 1 can be used to predict 
the size of fines that can plug the formation. 

Organosilane

The mechanism of orgnosilane to control the problems of fines 
migration is to locks fines in place through a thin coating. It will form 
silnols in-situ on siliceous mineral surfaces through a condensation/
polymerization process (Figure 3). The coating can stabilize fines and 
block ion-exchange sites. Therefore, the severity of fines migration is 
greatly reduced [11-13].

UTTA
UTTA is firstly applied in fracturing or gravel packing operations. 

Figure 3: Mechanism of organosilance.Figure 2: Wettability affects fines migration.
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It is used as typical post-treatment following matrix acidizing or acid 
fracturing treatments [12,33]. The main objective is to demobilize fines 
so that fines will not migrate with the flowing fluids. Thus it reduces the 
problems of permeability damage. The mechanism of UTTA is to form 
a thin film on the formation surfaces that can encapsulate the fines. 
In the formation, capillary pressure helps pull the tackifier into the 
contact points. UTTA is applicable in most formations, for example, 
sandstone reservoirs, carbonates, and coals. The thin film it forms can 
greatly enhance the ability of formation to withstand high stress in the 
case of high flow rates [34] (Figures 4 and 5).

Conclusions
In this study, various factors contributing to fines migration are 

discussed. The mechanisms and treatments of fines migration are 
presented. The following conclusions can be drawn from this study:

• Fines migration can severely damage the permeability of 
formation and should always be minimized. Any chemical treatment 
can potential cause fines migration and should be evaluated in the lab 
prior to field implementation.

•  The newly application of UTTA in controlling fines migration 
has been very successful because it can be applied in most formations 
and the thin film it formed can greatly enhance the ability of formation 
to withstand high flow rate.
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Figure 4: Effect of UTTA treatment in protecting core exposed to fresh water.

Figure 5: Effect of fines migration in Berea core after acidizing is minimized by 
treating the formation with a UTTA.

Permeability, mD Pore size, microns Plugging range, microns
100 10 1.4 to 3.3
250 15.8 2.2 to 5.2
500 22.4 3.2 to 7.4
750 27.4 3.9 to 9.1

1000 31.6 4.5 to 10.5
1500 38.7 5.5 to 12.9
2000 44.7 6.3 to 14.9

Table 1: Relationship between permeability, pore size and plugging range.
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