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Introduction 
Polymethylmethacrylate (PMMA) is the most widely used material 

for fabricating removable partial or complete dentures; however, 
it has a relatively low fracture resistance [1,2]. To overcome the low 
fracture resistance of PMMA, several ways are used for reinforcement. 
The conventional method involves the use of metal wires, plates or 
stainless steel mesh as strengtheners of denture base polymers [3,4]. 
PMMA resins with either organic or inorganic fibers have been tested 
as suitable materials for prosthodontics [4-9]. Fibers used in polymer-
fiber composites include glass fibers [5], sapphire whiskers [10], 
aramid fibers [11,12], carbon fibers [13], Nylon [14], or ultra-high-
modulus polyethylene fibers [8]. The inclusion of metal wires and plate 
reinforcements enhances the strength of PMMA [15], and decreases the 
likelihood of denture fractures caused by strong biting or impact forces 
[4]. It also improves its thermal conductivity [15], but leads to poor 
esthetics for complete dentures [16]. It has been reported that carbon 
and aramid fibers strengthen PMMA; but they are generally difficult 
to polish, and may cause an esthetic problem [6,7,11,13,17]. Some 
investigators have found that the flexural properties of polyethylene 
fiber-reinforced denture base polymer showed significant increase [18]; 
whereas, others have found that inclusion of polyethylene fibers did 
not improve mechanical properties of PMMA resin [8]. Polyethylene 
fibers provide good esthetic qualities for dental applications; but the 
process of etching, preparing, and positioning layers of woven fibers 
may be difficult for the dental office [16,17]. Different types of glass 
fibers are produced commercially; these include E-glass, S-glass, 
R-glass, V-glass, and Cemfil [19]. Of these, E-glass fiber is claimed 
to be superior in flexural strength [5,20,21]. Dynamic in vitro tests 
showed that glass fiber reinforcement increased fatigue resistance of 
dental appliance up to 100 times compared with fatigue resistance of an 
unreinforced restoration [22]. By contrast, Tacir et al. [16] concluded 
that strengthening with glass fibers decreased the flexural strength of 
the acrylic resin polymers. Glass fibers, like polyethylene fibers, exhibit 
good esthetic properties [12,17,21-23]. 

Silanated glass fibers may be the fibers of choice for reinforcing 
denture base polymers because of their well-documented improvement 
in fracture resistance and good esthetic quality [21-23]. However, the 
manufacturing process of glass fibers requires considerable energy 
consumed and needs additives, which makes it expensive. Thus, it may 
be necessary to look for an alternative cheaper than glass fibers and 
enhances the flexural properties of PMMA resin.

Nowadays, both industrial and academic world are centering 
their attention toward the development of composites reinforced with 
natural fibers. In particular, among the natural fibers that can be used 
as reinforcement, the basalt ones represent the more interesting for 
their properties. Basalt is a natural material that is found in volcanic 
rocks originated from frozen lava, with a melting temperature 
comprised between 1500° and 1700°C [24,25]. Chemical analyzing of 
basalt revealed that SiO2 is the main constituent and Al2O3 is the second 
one [25].

Basalt fiber was developed by Moscow Research Institute of Glass 

and Plastic in 1953-1954. It is a high-tech fiber invented by the former 
Soviet Union after 30 years of research and development, and its first 
industrial production furnace was completed in 1985 at Ukraine fiber 
laboratory [26]. This kind of fibers has comparable or better resistance 
than glass fibers [27], poses no risk to human beings [28], has high 
chemical stability, and good resistance to alkaline and acids exposure 
[29]. The manufacturing process of basalt fibers is similar to that of glass 
fiber, but with less energy consumed and no additives, which makes 
it inexpensive in comparison with glass fibers [30]. Due to its good 
properties, basalt fiber has gained increasing attention as a reinforcing 
material especially compared to traditional glass fibers [27,30]. 

The purpose of this study was to determine flexural properties of 
unreinforced heat-polymerized denture base acrylic resin and those 
reinforced with chopped basalt fibers. The study also aimed to compare 
the effect of incorporating monomer, silane, or phosphoric acid- 
treated basalt fibers on flexural properties of Polymer fiber composite. 
The null hypothesis was that incorporating chopped basalt fibers would 
not produce differences in the flexural properties of PMMA; and there 
would not be significant differences in the effect of the three tested 
methods of basalt fibers treatment on flexural properties of Polymer 
fiber composite.

Material and Methods 

A compression molding technique was applied to preparing all 
specimens. Thirty dental stone molds were prepared in dental flasks 
using wax patterns of specific dimensions. Wax (Huge Cad Cam Wax, 
Pearson Lab) discs 98 mm were used to manufacture wax patterns 
measuring (65 x 10 x 3 mm) by CAD/CAM technology (DWX-51D 
5-Axis Dental Milling Machine) [31]. Each wax pattern was invested in 
dental stone type III (Durguix, Hard natural stone, Protechno, Gerona, 
Spain). After the final set of the dental stone, the flask was placed in 
boiling water for 4 to 6 minutes to soften the wax and then it was 
removed from the water and opened. The residual wax was washed out 
with a stream of boiling water and the prepared molds were immersed 
in hot water to remove any trace of impurities and to facilitate the 
application of separating medium. The mold cavities obtained were 
used for the preparation of acrylic resin test specimens.

A power analysis (using G ⃰ Power Version 3.1.5) was undertaken 
to determine the required sample size. Thirty rectangular (65mm long, 
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10mm wide and 3mm thick) specimens were equally divided into five 
groups based on reinforcement and fiber treating method. The control 
group (Group C) consisted of conventional heat-polymerized acrylic 
resin (Vertex Regular, Vertex dental, Zeist, The Netherland) specimens 
which were unreinforced with fibers. The remaining four experimental 
groups were made with the same conventional heat-polymerized acrylic 
resin, and the same resin reinforced with basalt fibers (Technobasalt, 
Kyiv, Ukraine) (Figure 1).  The basalt fibers were 16 ± 2 μm in diameter 
and were cut with scissors to the lengths of 5mm [16]. The cut fibers 
were cleaned in boiling water for 10 minutes and air-dried before use. 

Group UBF specimens were modified by incorporating an 
additional fiber reinforcement of untreated basalt fibers. 

Group MBF specimens were reinforced with monomer treated 
basalt fibers. The basalt fibers were soaked in monomer (metyl 
methacrylate) (Vertex Regular, Vertex dental, Zeist, The Netherland) 
for 10 minutes to allow for better bonding with the acrylic resin [16,32]; 
after the fibers were removed from the monomer, excess liquid was 
allowed to dry.

Group SBF specimens of the same dimensions as above were 
modified by incorporating silanized  basalt fibers. The cleaned fibers 
were silanated by being dipped into a silane solution (Ultradent 
Products. USA) for 5 min, and air dried for 40 minutes [8].

Group PhABF specimens were reinforced with basalt fibers which 
were treated by phosphoric acid 35% (Ultra-Etch, Ultradent, South 
Jordan, USA) for 5 minutes, and then they were cleaned and air-dried.

After monomer, silane, or phosphoric acid treatment of basalt 
fibers, the resin and fibers (2% by weight) [12,20] were mixed 
thoroughly to disperse the fibers.

For control group, the heat-polymerized acrylic resin was mixed 
according to manufacturer’s instruction. When the mixture reached a 
dough consistency, it was packed in the mould and trial closure was 
performed [33]. The final closure was at 24.13 N/mm2 and maintained 
for 30 min. The acrylic resin was polymerized in water with long 
polymerization cycle. The polymerizing unit (Hanau Engineering 
Company, Buffalo, N.Y., U.S.A.) was controlled to raise the temperature 
to 74˚C at 1 hour, and then kept at 74˚C for 8 hours. After polymerizing 
and cooling inside the water bath to room temperature, deflasking was 
carefully completed. Specimens were evaluated to ensure absence of 
voids or gross irregularities with ×3.5 magnification. Specimens were 

then finished with 400 and 600-grit sandpaper. The dimensions of all 
specimens were checked by digital caliper, which can record changes as 
small as 0.01 mm.

For the remaining experimental groups, the specimens were 
polymerized and recovered in the same manner as the control group; 
however, the difference was incorporating basalt fibers to the acrylic 
polymer before mixing with monomer.

All specimens were stored in distilled water for 7 days, to remove 
the remaining unreacted monomer [34]. Specimens were labeled on 
each end before testing.

A 3-point bending test was carried out for the test specimens with a 
universal testing machine (DY-34 ADAMEL LHOMARGY, FRANCE) 
at a crosshead speed of 5 mm/min (Figure 2). A load was applied by a 
centrally located rod until fracture occurred. The ultimate transverse 
strength (TS) was calculated from the formula [35]:

TS =3Fl / 2bh2

Where F is the applied load (N) at the highest point of the load-
deflection curve, l is the span length (50.0 mm), b is the width of the test 
specimen (3 mm), and h is the thickness of the test specimen.

Statistical analysis of the results was carried out with a one-way 
analysis of variance (ANOVA) and Tukey’s multiple comparisons post 
hoc analysis for test groups, with a significance level of .05.

Results
The mean mechanical test result of each group is shown in (Table 

1). The flexural strength of control group (unreinforced with basalt 

Figure 1: Basalt fibers (16 ± 2 μm in diameter).
Figure 2: A 3-point bending test by the universal testing machine (DY-34 ADAMEL 
LHOMARGY).
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fibers) ranged from 63.40 to 67.60 MPa, with a mean of 65.5 MPa. 
In group UBF (reinforced with untreated basalt fibers), the flexural 
strength ranged from 69.20 to 72.70 MPa, with a mean of 70.63 MPa. 
The MBF group (reinforced with monomer treated basalt fibers) 
recorded the highest flexural strength; it ranged from 81.20 to 87.30 
MPa, with a mean of 84.73 MPa. Incorporating silanized basalt fibers 
(SBF) increased the flexural strength; it ranged from 73.80 to 77.20 
MPa, with a mean of 75.8 MPa. In PhABF group (reinforced with basalt 
fibers treated by phosphoric acid 35%) the flexural strength ranged 
from 69 to 70.20 MPa, with a mean of 69.47 MPa. One-way ANOVA 
test showed a statistically significant difference between the test groups 
(P < 0.05). Group C was significantly different from Group MBF and 
SBF. Group MBF was significantly different from Groups UBF, SBF 
and PhABF. Group SBF was significantly different from PhABF 
(Table 2). 

Discussion
Denture base acrylic resins are subjected to many different stresses. 

Intra-orally, repeated masticatory forces lead to fracture of a denture 
base which is a flexural fatigue failure; while extra-orally, high-impact 
forces can occur if the prosthesis is dropped and subsequently the 
denture base can fracture [16].

With the increasing interest in finding out suitable solutions 
in material design to avoid fracture of the denture base, research on 
natural materials such as basalt has increased at a rapid rate [30]. This 

study revealed the effect of basalt fiber reinforcement and preparing 
basalt fiber methods on the flexural properties of PMMA resin.

Results showed that the flexural strength of UBF group was not 
significantly differed from control group (p>0.05). Thus, there were 
not any benefits by incorporating basalt fibers in improving flexural 
strength. However, the study demonstrated that group MBF specimens 
who were reinforced by monomer treated basalt fibers recorded the 
highest flexural strength. Impregnating the reinforcements allows the 
formation of a graded interface between the two different materials 
(basalt fibers and PMMA) and it may increase the flexural strength 
of the polymer fiber composite. A previous report [36] suggested 
that increased flexural strength may be related to how effectively the 
fibers can be impregnated with the acrylic resin. So that, increased 
amount of MMA liquid could have induced a degradation effect on 
the heat-polymerized denture base acrylic resin that may improve the 
incorporating process of basalt fibers. Incorporating salinized  basalt 
fibers improved the flexural strength of denture base acrylic resin and 
it may be resulted from chemical attaching effect of silane. Flexural 
strength of Group SBF specimens were less than of MBF. This can 
be attributed to the tendency of silane-treated basalt fibers to clump 
together, accounting for the weakened samples. The results of this 
study revealed that flexural strength of PhABF specimens was low. 
Basalt fibers surface was modified by phosphoric acid 35%, but the 
modification did not contribute to improve the incorporating of fibers 
into acrylic resin bulk. Weak attaching points may be the initiation and 
propagation of a crack.

Group N Treatment Flexural strength values (MPa)
C 6 Unreinforced with fibers 67.13 (1.60)

UBF 6 Untreated basalt fibers 70.60 (2.1)
MBF 6 Monomer treated basalt fibers 83.71 (2.19)
SBF 6 Silanized basalt fibers 73.37 (2.1)

PhABF 6 Basalt fibers treated by phosphoric acid 67.03 ( 2.11)
Standard deviations are given in brackets

Table 1: The mean mechanical test results and standard deviations of test groups.

(I) Group (J) Group Mean Difference (I-J) Std. Error Sig. 95% Confidence Interval
Lower Bound Upper Bound

C UBF -3.46667 1.65893 0.295 -8.9263 1.993
MBF -16.57667* 1.65893 0 -22.0363 -11.117
SBF -6.23333* 1.65893 0.024 -11.693 -0.7737
PhABF 0.1 1.65893 1 -5.3597 5.5597

UBF C 3.46667 1.65893 0.295 -1.993 8.9263
MBF -13.11000* 1.65893 0 -18.5697 -7.6503
SBF -2.76667 1.65893 0.492 -8.2263 2.693
PhABF 3.56667 1.65893 0.272 -1.893 9.0263

MBF C 16.57667* 1.65893 0 11.117 22.0363
UBF 13.11000* 1.65893 0 7.6503 18.5697
SBF 10.34333* 1.65893 0.001 4.8837 15.803
PhABF 16.67667* 1.65893 0 11.217 22.1363

SBF C 6.23333* 1.65893 0.024 0.7737 11.693
UBF 2.76667 1.65893 0.492 -2.693 8.2263
MBF -10.34333* 1.65893 0.001 -15.803 -4.8837
PhABF 6.33333* 1.65893 0.022 0.8737 11.793

PhABF C -0.1 1.65893 1 -5.5597 5.3597
UBF -3.56667 1.65893 0.272 -9.0263 1.893
MBF -16.67667* 1.65893 0 -22.1363 -11.217
SBF -6.33333* 1.65893 0.022 -11.793 -0.8737

*The mean difference is significant at the 0.05 level

Table 2: Multiple comparison of all: study for flexural strength (Tukey HSD) groups.
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Adding monomer treated basalt fibers is less cost in comparison 
with adding glass fibers. On the other hand, glass fiber provides better 
aesthetic qualities than basalt fibers. Therefore, it is preferable to use 
basalt fibers in the hidden parts of the dentures.

Three-point flexural test, accepted by international standards 
for polymer materials, including ISO/DIS 1567:1999 Denture base 
polymers, is the most common technique of measuring flexural 
properties of denture bases [37]. According to ISO/DIS 1567:1999 
flexural strength of heat-polymerized acrylic resin should be no less 
than 65 MPa [35]. The results of this study demonstrated that the mean 
flexural strength of all test groups was higher than that the required by 
ISO/DIS 1567:1999. Thus, all addition methods are suitable for clinical 
use. However, the flexural strength in Group MBF was significantly 
higher than that of other groups.

This study involved a limited analysis of a mechanical property for 
only one heat-polymerized denture base resin. Further research should 
be conducted to study other denture base resins, and how they could 
affect other physical and mechanical properties of these materials. The 
clinical implication of this study is that adding basalt fibers may have a 
positive effect on the strength of complete dentures. Also, using basalt 
fibers may save money, because they need less energy consumed and 
no additives, which makes it economical.   

Conclusions
Within the limits of this study, flexural strength of PMMA 

specimens was positively influenced by adding basalt fibers. Also, 
preparing method of these fibers may have an effect on the flexural 
strength. According to the results of this study reinforcement the 
PMMA with monomer treated basalt fibers can be recommended.
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