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Peptides designed to inhibit Aβ amyloid formation
Many mutations affecting Aβ production or accelerating Aβ 

aggregation result in early-onset familial AD [1,2], and there is an APP 
mutation nears the β-cleavage site that protects against the development 
of late-onset dementia [3]; this evidence strongly supports the amyloid 
cascade hypothesis. Moreover, Aβ deposition might start ~20 years 
before expected symptom onset in familial AD [4], suggesting the 
importance of anti-amyloidopathy in AD prevention. Thus, many 
peptides have been designed to inhibit Aβ amyloid formation. Most of 
the peptide inhibitors were designed based on the Aβ sequence [5-14] 
and some of them were obtained from random screening [15-18]. These 
peptides were selected based on their ability to inhibit Aβ fibrillization 
and to reduce Aβ-induced toxicity. However, very few have been tested 
in vivo (Table 1). The in vitro efficacy in inhibiting the toxicity and 
amyloid fibril formation of Aβ does not guarantee the success of this 
peptide in reducing amyloid plaque accumulation in the brain, as shown 
in the case of the D1 peptide [17]. 

Peptide drug delivery is a key issue
Peptide therapy hinges on peptide stability and delivery. How can 

we prolong the lifespan of these peptides in the body? How can they 
pass the blood-brain barrier into the brain? Juhasz et al. intravenously 
injected tritium-labeled pentapeptide, which has sequence LPYFD 
and C-terminal amidation, in rats to study its biodistribution. The 
majority of the radioactivity was detected in the liver, followed by the 
kidney and the stomach, with only ~0.3% detected in the brain [19]. 
Therefore, most anti-AD peptide drugs are tested in animals either by 
intraperitoneal injection or intracerebral infusion [12,17,18,20-22]. 
From the prevention point of view, neither intraperitoneal injection 
nor intracerebral infusion is practical. Another method, oral feeding, 
has only been tested for the peptide D3, which is composed solely of 
D-amino acids [23]. Although positive responses were obtained in

amyloid deposition and cognitive behavior, the oral dosage of D3 is 
huge (0.5-1 mg/mouse/day). 

To increase brain targeting, intranasal delivery is an excellent 
non-invasive form of administration [24]. Banks et al. reported that, 
compared with intravenous administration, intranasal administration 
of radioactively labeled exendin(9-39), a glucagon-like peptide-1 (GLP-
1) receptor antagonist, was four times more effective in delivery to the
olfactory bulb, but three times lower in delivery to the rest of the brain
[25]. Except for the olfactory bulb, there was no statistically significant
distribution difference in the different brain regions. The amount of
radioactively labeled exendin(9-39) in the brain via the intranasal route
is less than 0.3% of the administrated dose per gram of tissue. The success 
of V24P(10-40)-PEI proved intranasal administration combined with
PEI conjugation to be a feasible design to efficiently deliver peptides into 
the brain. Using fluorescence-labeled R8-Aβ(25-35)-PEI peptide, more
than 17% of this peptide can be transported from the nose to the brain,
reaching a maximum peptide level in the brain after 6 h [26]. A similar
study also intranasally delivered the peptide wtNBD to AD transgenic
mice [27]. wtNBD does not have PEI conjugation, but contains a cell-
penetrating peptide segment with many positively charged residues. The 
data from these peptides suggest that the poly-positively charged moiety 
can help the peptides move from the olfactory epithelium in the nasal
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cavity to the brain. PEI is a polycationic polyamine with a branched 
backbone and has long been used in assisting DNA transfection across 
the cell membrane. Compared to the poly-positively charged peptide 
sequence, PEI has a higher charge-to-mass ratio than poly-Arg or poly-
Lys. It can easily be coupled to the carboxyl group of the C-terminus of 
peptides, and this conjugation can protect peptides from exopeptidase 
attack to extend the half-life. Moreover, because PEI can carry large 
proteins such as green fluorescence protein from the nose to the 
brain [28], PEI-conjugation can potentially transport the functional 
proteins that are beneficial for brain functions, such as brain-derived 
neurotrophic factor and insulin, into the brain.

Other designed anti-AD peptides 
Many peptides designed to work on other pathways also showed 

efficacy against amyloidopathy. For example, the peptide wtNBD 
was designed to inhibit the induction of NF-κB activation, not to 
directly target Aβ. Giving wtNBD to the 5XFAD mice via intranasal 
administration for 30 days suppresses microglial activation, reduces 
Aβ plaque deposition, and improves the cognitive performance of the 
mice [27]. TFP5 contains a fluorescence tag, a truncated fragment of 
p35, which is an activator of cyclin-dependent kinase 5 (Cdk5), and 
a segment derived from Tat protein (with many Arg residues) for 
cell penetration. Cdk5 is hyperactivated in AD brains. The complex 
formed of Cdk5 and p25, a proteolytic product of p35, can cause the 
aberrant hyperphosphorylation of tau and neurofilaments and has been 
identified as a therapeutic target for AD. TFP5 was designed to inhibit 
Cdk5/p25 activity and tau hyperphosphorylation, yet its administration 
to the 5XFAD mice by intraperitoneal (IP) injection not only reduced 
the phosphorylation of tau and neurofilaments, but also decreased Aβ 
accumulation and neuroinflammation in the brains of these mice [22]. 
Intranasally administered NAP, an octapeptide promoting microtubule 
assembly, reduced both Aβ accumulation and tau hyperphosphorylation 

in the 3xTg AD mice [29,30]. Amyloidopathy and tauopathy might be 
more complicated and correlated than previously thought. Pituitary 
adenylate cyclase-activating polypeptide (PACAP)38 has an anti-
inflammatory and neuroprotective peptide. Daily intranasal treatment 
of PACAP38 in the APPV717I transgenic mice for three months increased 
α-secretase activity and improved cognitive function [31]. Therefore, a 
“multi-target” therapy potentiates an additive effect in AD prevention. 
Recently, several peptides were designed to inhibit tau aggregation 
based on the VQIVYK sequence, which is adopted from the human tau 
sequence 306-311 and is the crucial segment in the fibril formation of 
tau. One D-peptide, with the sequence TLKIVW, was designed based 
on computer modeling [32]. Several 12-mer D-peptides were screened 
from a peptide library using the mirror image phase display technique 
[33]. These anti-tau peptides are protease resistant, as they are composed 
only of D-amino acids, but have not yet been tested on animal models. 
The evidence indicates the value of testing PEI-conjugated anti-tau 
peptides delivered intranasally. Moreover, a “peptide cocktail” with 
multiple targets may be the most promising strategy.

Conclusion
The success and failure of anti-Aβ immunotherapy demonstrated 

the need to prevent AD from a very early stage. Furthermore, the 
prolonged nature of AD progression implies that prevention is a long 
battle too. The goal is convenient treatment without side-effects-
criteria that match intranasally delivered peptide therapy. Although 
the design of these intranasal anti-AD peptides does give them the 
ability to target specific anatomic regions in the brain, the animal 
results showed that they can function in the places where they are 
needed [1,26,27,29,30]. Moreover, the misfolded protein aggregates 
found in other neurodegenerative diseases such as Parkinson’s disease, 
Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases 
suggests a broad application for peptide therapy in the future.

Peptide Sequence Proposed mechanism Animal data Delivery

V24P(10-40)-PEI [1] Ac-YEVHHQKLVFFAEDpGSNKGAIIGLMVGGVV-PEI (31 a.a.) trap Aβ to avoid its self-
aggregation Aβ↓ intranasal drop

R8-Aβ(25-35)-PEI [26] Ac-RRRRRRRRGSNKGAIIGLM-PEI (19 a.a.) inhibit Aβ fibrillization
 

Aβ↓
inflammation↓
memory↑

intranasal drop

wtNBD [27] DRQIKIWFQNRRMKWKKLDWSWL (23 a.a.) inhibit NF-κB activation
Aβ↓
inflammation↓
memory↑

intranasal drop

TFP5 [22] FITC-GGGKEAFWDRCLSVINLMSSKMLQINAYARAARRAARR
(38 a.a.) inhibit Cdk5 activation

Aβ↓
p-tau↓
inflammation↓
apoptosis↓
memory↑

IP injection

iAβ5p [12,20] Ac-LPFFD-NH2
(5 a.a.)

inhibit Aβ fibrillization;
disaggregate Aβ fibrils

Aβ↓ IP injection
ICV infusion

D3 [17,21] rprtrlhthrnr
(12 a.a.)

bind Aβ42; inhibit Aβ fibrillization Aβ↓
Microglial↓
GFAP↓

IH infusion; 

D3 [23] rprtrlhthrnr
(12 a.a.)

bind Aβ42; inhibit Aβ fibrillization Aβ↓
memory↑ oral

D-Trp-Aib [18] w-Aib (2 a.a.) inhibit Aβ oligomerization Aβ↓
memory↑.

IP injection

NAP [29,30] NAPVSIPQ
(8 a.a.) promote microtubule assembly

Aβ↓
p-tau↓
memory↑

intranasal drop

PACAP38
[31]

HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK
(38 a.a.)

anti-inflammatory; 
neuroprotective

α-secretase↑
novel object recognition↑ intranasal drop

Ac: Acetylation; NH2: Amidation; PEI: Polyethylenimine; FITC: Fluorescein Isothiocyanate; Aib: α-Aminoisobutyric Acid; GFAP: Glial Fibrillary Acidic Protein; IP: 
Intraperitoneal; ICV: Intracerebroventrical; IH: Intrahippocampal
Table 1: Peptide drugs that have been tested in AD animal models. D-amino acids are represented by the lowercase single letter code of L-amino acids. Peptide 
modifications are highlighted in grey. 
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