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Editorial

Due to its excellent mechanical properties, good biocompatibility,
corrosion resistance and excellent chemical stability oxide ceramics
(alumina and zirconia) have been qualified as a material for a growing
range of medical applications such as prostheses, dental materials,
femoral heads, among others [1,2]. It is often used in its dense form,
despite there are some applications where the use of porosity has
proven to be beneficial [3-5]. The use of dense ceramic prostheses can
pose the problem of stress shielding (reduction in bone density as a
result of removal of normal stress from the bone by an implant) due to
the mismatch in Young’s modulus (YM) relative to the bone, which is
significantly lower [6,7]. Porosity have the ability to reduce the YM of
the ceramic, reducing the mismatch to that of the bone, and at the
same time, exhibits the potential of bone ingrowth in implants,
depending on porous parameters such as pore size interconnectivity
and porosity [5]. Four levels of pore sizes was described by Smiske et
al. [8] as heaving specific features: 1) the range between 1-100 microns
are similar to porous bone structure and must be present in
biomaterials for biomimetic principles; 2) the range between 100-350
microns is optimum for bone ingrowth; 3) the range between
350-1000 microns is useful to decrease the ceramic YM and to reduce
the stress shielding; 4) the range of 350 to 3500 microns is usefull for
mechanical attachment of a porous implant during the medical
surgery. The implant should therefore include these types all these
types of porosity ranges rather than being dense or having
homogeneous porosity. Together with the type of porosity, the pore
connectivity also impacts the mechanical properties and cell/tissue
ingrowth in an implant [9]. The gradation in porosity size and shape
across the implant volume follows the philosophy of the functionally
graded materials (FGMs). FGMs offer the advantage of tailoring
materials with specific structural, compositional, morphological, and
mechanical properties. The early research and development of FGMs
was driven by the need of reducing the thermal stresses developed in
thermal barrier coatings on high temperature alloys. Now FGMs can
be found in various material/phase combinations. FGMs have also
been used as biomaterials for dental and orthopedic applications
[10-12]. FGMs have been reviewed by some researchers.

The traditional processing methods for porous biomaterials cannot
meet all the above-mentioned specifications simultaneously. The
Selective Laser Melting is a powerful technology that can address them
based on its capacity to create parts with complex shapes from a 3D
CAD file, built layer by layer [8]. Therefore, selective laser sintering/
melting (SLS) technology can be used to produce components with the
desired size, shape and distribution of the porosity within the ceramic
component. Only limited references can be found in literature on the
laser sintering of oxide ceramic components, and no references could

be found where the control of the morphology and distribution of
porosity of oxide ceramics had been tried from 3D complex
geometries. Selective laser melting of oxide ceramics such as alumina
(Al2O3) and zirconia (ZrO2) has previously been investigated for use
in biomedical applications by Hagedorn et al. [13]. The production of
other ceramic and polymeric components (e.g. HAP, apatite-mulite
and PMMA) has also been investigated. [14].

While porosity is convenient for the osseo integration reasons and
YM adaption, it brings also undesired issues such as the weakening of
the ceramic structure. On the other hand, porosity offers the
opportunity to introduce additional materials into the object that
accounts for improvements in the mechanical properties. The
infiltration of bioactive glassy or polymeric materials in implants and
porcelain dental prostheses, for instance, can overcome the lack of
mechanical properties of the porous zirconia. It has been shown
elsewhere that the infiltration of a glass with low coefficient of thermal
expansion on an alumina-zirconia matrix produced compressive
stresses in the matrix, enhancing the strength of the ceramic by
25-50% [15]. This fact would be of extreme importance at the early
stage of implantation of an implant, where both higher mechanical
strength and good bonding to human bone as well as to soft tissues are
needed. At a second stage, these materials are expected to be resorbed
inside body, allowing the bone to grow inside the porous implant.

In the case of dental prostheses, the positive effect of the infiltration
of a glass on the surface of a zirconia dental substructure, creating a
graded structure, has also been demonstrated [10-12]. The infiltrated
zirconia displayed increased resistance to flexural fracture relative to
monolithic Y-TZP. This was attributed to the graded structure that
spread the maximum tensile stresses from the surface into the interior.
A twice load-bearing capacity of the graded substructure (glass
infiltrated) was obtained compared to homogeneous zirconia structure
[10-12].
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