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Introduction
Biomarkers can be considered to be chemical or biological 

molecules present in tissues, blood, or other fluids at quantifiable 
levels that are relatable to physiological status. In their most practical 
form they may be used as indicators of trauma, infection, and disease 
onset or disease progression [1-3]. For this reason alone their reliable 
assay is of truly enormous healthcare benefit. There is currently a 
huge amount of interest in the possibility of protein or nucleic acid 
markers reliably reporting on disease onset many years before patients 
become symptomatic. An ability to aggressively intervene in disease 
progression early would be utterly game-changing in the combat of, 
for example, neurodegeneration and cancer. Although a diverse range 
of markers have been studied, including glycoproteins (specially for 
cancer detection [4]) and monocytes [5,6] (associated to bacterial 
infection), this review will be focused to a consideration of nucleic acid 
and protein markers specifically. 

A wide range of strategies exist that enable the quantified assay 
of proteins or nucleic acids. These are, broadly speaking (though also 
see QCM and radioimmunoassays), [7-11] divisible into methods 
which are optical (Colorimetric, Surface Plasmon Resonance, Optical 
Microarray, ELISA, Interferometry, etc.) and those which are electrical 
(amperometric, impedimetric, capacitative, transistor based). If one 
ignores the very few biomarkers that natively possess well-defined 
and resolvable optical fingerprints, the majority of optical approaches 
require either target labeling, the utilization of an appropriate 
“sandwich” format or rely on specific induced change in excitable 
surface plasmons [12-15].

A quartz crystal microbalance (QCM) presents a piezoelectric 
technique able to detect nanogram levels of adsorbate [16,17] and have 
been applied to the detection of protein [18,19], nucleic acids [20] and 
biomolecular association constants [21-23]. Although natively label 
free, methodologies have been reported in which sensitivity has been 
boosted through nanoparticle modification of a secondary antibody 
binding agent [7,18]. Surface plasmon resonance methods operate 
through the sensitive detection of target induced change in refractive 
index at an appropriately modified sensor surface and, broadly 
speaking, spans the same general capabilities as presented by QCM 
[12,13,18,24].

Electrical methods commonly possess a high innate sensitivity 
and are readily scaleable at low cost. A large number of amperometric 
approaches to biomarker detection have been detailed in recent 
years – these include the utilization of “sandwich” assays in which 
transducing signal is provided by appropriately labeled secondary 
antibodies or the use of redox tagged capture nucleic acid aptamers 
[25,26]. The former approach requires two antibodies per target (and, 
hence, two well-behaved antibody-target binding events per target), 
two reproducibly exposed non overlapping target epitopes and the use 
of secondary antibodies that are redox tagged (e.g. nanoparticles [27-
31], quantum dots [32]), labeled with enzymes [26,33] or anchored, 
in multiples to particle surfaces, that generate a redox quantifiable 
output (Figure 1a). Despite these demands, this approach has been 
successfully demonstrated in a large number of case studies. For 
example, Dai and colleagues [33] have reported an electrochemical 
immunosensor to detect alpha fetoprotein (AFP), an important 
marker of testicular cancer [34]. The researchers used a prussian blue 
modified hydroxyapatite or HRP labelled secondary antibodies as 
signal generators with low limit of detection (LOD) (9 pg/mL). Yao 
and coworkers have used nanoparticle tethered secondary antibody 
HRP labels within an amperometric assay quantifying immunoglobulin 
G [35]. In this configuration, the researchers immobilized anti-IgG above 
a carbon glassy electrode functionalized with gold nanoparticles (GNPs) 
and HRP labeled secondary antibodies confined to Au/SiO2 nanoparticles. 
In this manner, multiple copies of peroxide generating HRP are brought to 
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Abstract
Electroanalyses have brought a huge amount to our understanding of interfaces generally. When applied to 

surfaces which have been specifically engineered so as to recruit targets from an analytical solution, potent 
sensors can be derived. These may be based on a multitude of different analytical methods all typified by spe-
cific requirements and surface configurations. This short review examines the application of amperometric and 
impedimetric methods to the detection of biomarkers of clinical relevance. Basic principles are introduced with 
examples at both planar and “nanofunctionalised” interfaces comprising immobilized antibodies/antigens and 
oligonucleotide receptors. A particular focus is made of new developments in impedance and impedance derived 
capacitance spectroscopy. 
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the interface per capture event (and signal amplification increased so that 
sub ng/ml levels target are quantifiable) [35]. 

In addition to their use in increasing supporting electrode surface 
area, [27,30,36,37] GNPs have also been employed in tagging antibodies 
and aptamers in sandwich assays [30,36] where they are directly 
responsible for electrochemical signal generation (Figure 1b). Using this 
methodology, Ho et al. [38] for example, reported an immunosensor to 
detect a lung cancer biomarker, α-Enolase (ENO1), with a LOD of 2.38 
pg/mL. In this case, the receptor antibody was physically adsorbed on 
a polyethylene glycol modified electrode. After the immunoreaction, 
antibody tagged GNP adducts facilitated target quantification across a 
range of 0.001-10 ng/mL [38]. An immunosensor to detect human IgG 
in a linear range of 10-500 ng/mL was designed by Chen et al. [39] The 
receptor antibody was adsorbed to a carbon paste electrode and, after 
antibody – target interaction, colloidal gold particle labeled antibody 
was used to detect indirectly the target with a limit of detection of 4 
ng/mL [39].

The use of redox labeled capture aptamers, in which an 
electrochemical signal is modulated by a large conformational 
change associated to a target capture, has been demonstrated in the 
quantification of both nucleic acids and proteins under specific 
controllable conditions [25,40,41]. For example, Xiao et al. have 
reported a sensor to quantify thrombin in blood serum in a linear 
nanomolar range [42] using methylene blue labeled aptamers on gold 
electrodes (Figure 2a). In what is now a common format, the methylene 
blue redox communication with the underlying electrode changes 
dramatically as thrombin target binds [42]. In most cases, however, 
communication decreases as the aptamer-target association “rigidifies” 
the former (turning off the flexibility required in order to bring the 
redox unit to the electrode surface). This “signal turn off” approach 

can potentially suffer from “false negatives” (i.e. where signal is lost 
through processes other than specific target recognition events). To 
overcome this problem, other approaches have been developed [25,43]. 
In one of them, ferrocene labeled thiolated aptamers were immobilized 
on gold surface in a manner such that the ferrocene probe was unable 
to access the solid surface below [44,45]. The conformational changes 
associated with target binding this time brings the redox reporter into 
closer approach to the electrode, yielding a positive amperometric 
readout signal (Figure 2b). In a related methodology, DNA-duplex 
probes comprising an anti-thrombin aptamer and a complementary 
methylene blue labeled nucleic acid component have been used 
(Figure 2c). In the presence of thrombin, the complementary sequence 
is liberated while the aptamer sequence binds the target. This event 
brought the methylene blue tag to the proximity of the electrode 
surface, generates a “turn on” signal and enables target quantification 
down to low nanomolar levels [46].

Although methods in which target analyte or secondary antibody 
are labeled are diverse, and can undoubtedly be potent, there are 
significant issues associated with the process of labeling, attaining 
reproducible changes at the surface and in the inherently multistep 
nature of analyses. Label free approaches benefit considerably from 
being (potentially) single step, fast and cheap. Unfortunately, the 
reliance of transduction on a single (“blind”) binding process brings 
with it commonly profound problems associated with nonspecific 
response. There is, nonetheless, a significant and growing body of 
work showing that high levels of selectivity can be achieved through 
controlled interfacial chemistry. 

Field effects biosensors can be built on the back of highly evolved 
microelectronic fabrication principles and operate through an 
electrostatic modulation of charge carrier mobility in suitably prepared 
semiconductors. Most normally, this modulation is achieved through 

a)         b)Substrate
enzyme

Signal readout
electrochemical

response

Voltage

C
ur

re
nt

secondary
GNP labeled

antibody

Product

target

Electrode

receptor
antibody

secondary
enzyme labeled

antibody

GNP

Figure 1: Schematic representation of an electrochemical immunoassay using enzyme (a) or GNP (b) labeled secondary antibodies in an amperometric sandwich 
methodology. Target presence is quantified by the electrochemical activity brought to the electrode surface by the label. In the most common enzymic case signal 
is through the reduction of generated H2O2 or through mediated electrochemistry of the enzyme itself [33] (mediator not shown). The signal readout in GNP labeled 
antibody assay is the reduction of a prior oxidised GNP (Oxidation: 0

44 3Au Cl AuCl e− − −+ → + . Reduction: 0
4 3 4AuCl e Au Cl− − −+ → +  [38,39].
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the use of an integrated “gate electrode”. In recent years the use of 
“electrolyte gating” has been explored where conductance modulation 
occurs through the electrostatic environment of the semiconductor 
surface exposed to solution. In some cases this can be at an “extended 
gate” electrode in order to maximize conductance response to target 
binding [47]. A derivative of this approach, in which a “nanogap” is 
mechanically engineered into the space between a gating electrode and 
the semiconducting channel, has also been applied to protein detection 
[48].

Surface impedance analyses (electrochemical impedance 
spectroscopy, EIS) can be low cost, low power, and highly sensitive 
with minimal hardware demand. Like all electrical approaches 
scaleability, miniaturization and multiplexing are strong positive 
points. Closely related capacitive biosensors possess similar features. In 
The Recognition Surface Section of this review we focus on the demands 
and strategies associated with developing impedimetric or capacitive 
interfaces that respond selectively to specific biomarkers. In EIS Based 
Biosensing Section, we introduce the fundamentals of EIS and discuss 
relevant applications. Yet in this section, we show how the same 
experimental configuration can be used to interrogate the capacitive 
fingerprints of electrode-confined capture interfaces. We progress 
from this to a summary of both “classical” capacitive biosensing and 
new developments of electrochemical capacitance spectroscopy (ECS). 
Finally, in ECS Biosensing Section, we discuss the perspectives and 
potential applications of the redox capacitive biosensors.

The Recognition Surface 
A biosensing configuration is essentially comprised of two 

components: an immobilized recognition element responsible for 

selective target recruitment, and a transducer capable of converting 
the biorecognition event to, ultimately, an electronic or optical signal 
(Figure 3). For many years now, electrode coupled enzymes have been 
used to assay a range of low molecular weight specific biomarkers [49,50]. 
Affinity-based biosensors integrate antibodies, antibody-fragments or 
aptamers into the transducer surface. Lectins, carbohydrate binding 
proteins, can also be used as recognition elements supporting the 
detection of carbohydrates or glycoproteins [51,52]. 

A consideration of the recognition surface is the first critically 
important step in biosensor design. Assay efficacy depends sensitively 
on the receptor-surface integration, issues of receptor availability, 
orientation, surface density and target binding efficacy. Ideally, the so-
prepared interface should also be highly specific in its response. The 
initial process of bioimmobilization has been explored via a diverse range 
of strategies [53-61]. For antibodies, a maximum retention of native 
target binding efficacy is desired as they are integrated into a surface 
architecture at a density that is also optimized for capture efficiency 
[62,63]. A broad range of physical adsorption and entrapment methods 
have been utilized [59,64,65]. Although these can be facile and generate 
high surface densities on cationic, anionic or hydrophobic interfaces, 
the resulting biological surface is often typified by instability and low 
binding efficacy [61,64]. Non-covalent immobilization of untreated 
antibodies can also be mediated by an intermediate protein directly 
coupled to an underlying surface (such as presented by protein A and 
protein G, resulting predominantly in tail-on orientation i.e. anchoring 
specifically via the Fc region) [53,58]. The high non-covalent affinity 
between avidin/streptavidin and biotin (Kd ~10-15 M) has also been very 
popular [53,66]. In this case, a biotin labeled antibody is immobilized, 
usually in a tail on-orientation, on a surface previously modified 
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Figure 2: Three methodologies applied in the detection of thrombin using redox labeled aptamers. (a) An unfolded methylene blue labeled aptamer initially enables 
electron transfer between the probe and the electrode (signal on), a capability removed on target binding (signal off). (b) In an alternative approach, a long aptamer is 
utilized in which the redox reporter is initially too remote from the underlying electrode (signal off).  After targeting binding, the ferrocene label approaches the electrode, 
increasing the electrochemical signal (signal on). (c) A DNA-duplex probe comprising an anti-thrombin aptamer and a complementary methylene blue labeled nucleic 
acid.  In the presence of thrombin, the complementary sequence is liberated while the aptamer sequence forms a thrombin-binding complex. This event enables the 
methylene blue tag to access the electrode (signal on).
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with avidin/streptavidin protein [53,67] (Figure 4a). Lee et al. [68] 
for example, reported a survey of experimental conditions needed to 
achieve the most effective immobilization of biotin labelled IgG mouse 
antibodies (anti-troponin and anti-NT-proBNP) on avidin modified 
surfaces in optimizing a fluorescent sandwich assay. Significantly, 
it was noted that higher antibody densities were associated with a 
steric hindrance that decreases capture probability and reduces assay 
sensitivity [56].

Controllable and stable surface immobilization is most often 
achieved through the use of an intervening, highly chemically 
tailorable, self-assembled monolayer (SAM) [59,60,69,70]. Where 
the transducing electrode is metallic, these are very commonly 
organosulphur based with a range of terminal functionalities [69]. 
These SAM films may be single component or mixed. In this case, the 
mixed SAM is obtained from a solution comprising two different thiols 
with different end-groups and chain lengths. One of the groups is used 
to covalently tether the receptor while another, usually of reduced 
chain length, is used to minimize lateral steric hindrance to target 
recruitment [22,59,71]. In seeking to maximize both biocompatibility 
and low background (nonspecific surface association – a critical issue 
in label free assays), highly hydrated PEGylated or polymeric interfaces 
have been shown to be highly effective [72,73]. Depending on the 
thiol end group, it is possible to use a variety of protocols to facilitate 
covalent antibody attachment. For carboxylic terminal SAMs, standard 
carbodiimide reactions [59,60] using N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) protocols 
are ubiquitous in tethering proteins through their solution exposed 
lysine residues [74-76]. For example, an impedimetric biosensor 
with picomolar detection of insulin was designed by Xu et al. [72] 
using polyethylene glycol (PEG) containing thiol HS–(CH2)11–(EG)3–
OCH2–COOH to both immobilize antibodies and drammatically 
reduce nonspecific surface interactions (non target protein-surface 
interactions). Amino modified surfaces can also be utilized in 
bioimmobilisation using a glutaraldehyde crosslinker [53,77,78].

Carbon-based electrodes, especially in those of nanoscale such as 
presented by carbon nanotubes (CNT) [80] and graphene sheets (GS), 

have received great attention in biosensing due partially to their high 
transducing surface area and associated enhanced electrochemical 
analytical signal [81]. Serafín et al. [82] have, for example, reported an 
amperometric immunosensor for the detection of insulin-like growth 
factor 1 (IGF1) using a multiwalled carbon nanotubes (MWCNT) 
and electropolymerized poly(pyrrole propionic acid) modified glassy 
carbon electrodes (GC). Monoclonal anti-IGF1 receptors were 
immobilized via EDC/NHSS (NHSS: N-hydroxysuccinimide sulfate) 
chemistry, and peroxidase labeled polyclonal antibodies applied in 
detecting the target with a linear range of 0.5 to 1000 pg/mL and LOD 
of 0.25 pg/mL [82]. Graphene interfaces have also been utilized; a 
voltammetric immunosensor was designed and reported by Eissa et al. 
[83] for example, to detect allergen ovalbumin with LOD of 0.83 pg/
mL. In this case, the authors immobilized antibodies on aryl diazonium 
functionalized graphene. 

Due to the high surface area and electronic conductivity, 
associated to the well-organized and featuring packed vertical oriented 
film, single-walled carbon nanotubes (SWCNT forests) have been 
explored in design sensitive assays (picogram levels LODs) [84,85], 
since SWCNT forests can facilitate electron transfer between the 
underlying electrode surface and immobilized biomolecules [86,87]. 
Often, carboxylated SWCNTs are assembled on iron hydroxide coated 
substrate, creating a high ordered vertical SWCNT forest [85-87]. The 
receptor antibody is then attached covalently to the end of the nanotube 
and, after immunoreaction between the receptor and target (antigen), 
an enzyme labeled secondary antibody is added to complex the antigen. 
The electrochemical signal of the label allows the quantification of the 
target. Using this approach, Rusling and coworkers [87] developed 
an amperometric sensor to detect HSA (human serum albumin). The 
authors immobilized anti-HSA on a SWNT forest via an EDC/NHS 
protocol. After exposing the sensor to HSA, HRP labeled secondary 
antibody was used to detect the target in a linear range of 0.075 to 
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7.5 nM with a LOD of 75 nM (without a mediator) and a better LOD 
(~1pM) using mediating hydroquinone [87]. Malhotra et al. [88] 
designed an electrochemical immunosensor to detect interleukin-6 (IL-
6), which is a cancer biomarker, immobilizing anti-IL-6 on a SWCNT. 
Using secondary antibodies attached to HRP decorated carboxylated 
multiwall carbon nanotubes, the assay was able to detect picogram 
levels of IL-6 (0.5 pg/mL). 

The extensive use of antibodies in biosensor configurations has 
been accompanied by a concern about cost, stability and reproducibility 
in surface performance, a concern that amplifies as progress is made 
towards viable “real world devices” [79]. The development of nucleic acid 
or peptide nucleic acid receptors has grown exponentially during the 
past decade in partial combat of this. These aptamers can, additionally, 
be prepared by low cost, facile in vitro preparation (SELEX methods 
[89]), easily modified with functionalized groups and labels, and have 
binding affinities that can be comparable to that typically associated 
with antibodies [25,43]. In many cases aptamers can be integrated with 
electrode surfaces (native or nanoparticle modified) using terminal 
thiol functionalities [79]. Alternatively, surface immobilization can 
be achieved through terminal amine anchoring to pre-carboxylate 
modified solid surfaces, or through biotin-streptavidin protocols [79]. 
For example, Yao et al. develop a piezoelectric biosensor to detect IgE, 
immobilizing a biotin-labeled aptamer above avidin film previously 
prepared on gold [90]. The authors used 3,3’-dithiodipropionic acid 
di(N-succinimidylester) (DSP) to obtain a SAM on gold and covalently 
coupled avidin to this through reaction with the activated ester. 

A very important issue related to surface design in the 
development of reliable label free point-of-care devices is the problem 
of biofouling [91]. Label free techniques for clinical applications 
suffer, often terminally, when attempts are made to detect low 
marker concentrations in real samples (blood, blood serum, saliva, 
plasma, urine, cerebrospinal fluid, etc.). Such samples generate high 
background signal (noise) specifically because of their high protein 
content. For example, HSA is present in blood at 107 ng/mL levels [92]. 
When compared to the clinically relevant levels of cardiac biomarkers, 
such as myoglobin, cTnI (Troponin I) and CRP (C-reactive protein), 
for example, all at 10-2 to 103 ng/mL, the demands are clear [93]. One 
methods of addressing this 104-109 concentration differential is the use 
of “blocking” proteins (serum albumin) [91] or the use of polymers 
coatings, such as polyethylene glycol (PEG) [73,91]. It is known that 
the latter films form highly hydrated surfaces [94] that have very 
low levels of protein interaction. The idea is that the introduction of 
specific capture antibodies (or aptamers) into such surfaces should, 
ideally, generate an interface that recruits only that antibody-specific 
target. Bryan and colleagues [76] have, for example, developed a 
faradaic impedimetric biosensor to detect CRP (with a LOD of ~300 
pM) in blood serum using receptive antibodies immobilised on a PEG 
containing thiol film. In a similar approach, Xu et al. [72] reported a 
faradaic impedimetric immunosensor to detect insulin in a 50% blood 
serum/buffer (phosphate buffered saline with Tween-20, pH 7.4) with 
an LOD of 4.77 pM.

Very effective non-fouling surfaces can be achieved using 
zwitterionic polymers [95-97], such as sulfobetaine methacrylate 
(SBMA) or poly-(carboxybetaine methacrylate) (PCBMA), and 
zwitterionic alkanethiolates [98]. These films produce charged but 
net neutral surfaces that are associated with high levels of hydration 
[94,96]. Using PCBMA, Yang et al. [99] developed a sensor to detect 
glucose in both diluted (10% and 50% in PBS) and neat human 
blood serum. The methodology comprises a hydrogel coating on a 

conventional amperometric glucose sensor, yielding an approach 
to detect glucose in a linear range of 4-20 mM. Luo et al. [100] 
applied chemisorbed zwitterionic polymer supports (PCBMA) in 
underpinning the detection of insulin in neat blood serum. In this case, 
CBMA monomer was pre-immobilized at the electrode surface and 
a mixture of CMBA, ethylene glycol dimethracrylate and 2-hydroxy-
2-methylpropiophenone irradiated (λ=254 nm) to initiate the 
polymerization across the surface. The antibody was then covalently 
tethered. Using this approach, the non-faradaic immunosensor was 
able to detect insulin in a linear range of 0.1-200 pM with a staggering 
LOD of 42.6 fM [100]. A SPR biosensor using a zwitterionic coating on 
SiO2/Au surfaces to detect activated leukocyte cell adhesion molecule 
(ALCAM – a cancer marker) was developed by Yu and coworkers 
[101]. The authors immobilized the antibody covalently above the 
zwitterionic polymer without “blocking” agents, yielding a sensor able 
to detect the biomarker in nanogram levels (64 ng/mL) in undiluted 
human serum [101]. Miyahara and coworkers developed a one-step 
synthesis of a zwitterionic alkanethiolate using 2-methacryloyloxyethyl 
phosphorylcholine (MPC) as a building block [98]. The authors 
functionalized one mercapto group in 1,6-hexanedithiol with MPC 
via Michael-type addition, allowing the remaining mercapto group to 
chemisorb to a gold surface. This methodology yielded a non-fouling 
protein and cell resistant SAM [98]. 

Once a suitably selective interface has been prepared, there exist a 
variety of methods by which target recruitment can be quantified (as 
noted above). Of the electroanalytical methods available, those based 
on EIS are the most sensitive of those applicable in a label free format. 
These may or may not utilize an initial pre-doping of the analytical 
solution with redox probe and accordingly are faradaic or otherwise. 
Though the vast majority of published works utilize changes in charge 
transfer resistance, capacitive approaches (faradaic or not – see below) 
can also be powerful [72,74,102-104] (Table 1). In the next sections, we 
will discuss the principles and applications of these approaches [105-
118].

EIS Based Biosensing
Fundamentals of EIS

EIS is a powerful interfacial analytical tool and has been applied 
extensively to corrosion studies [119-121], the characterization of 
charge transport across membranes [122] and battery development 
[123-125]. Its utility in detection interfacial binding events has been 
known for some two decades [126-129].

The impedance of an interface is generally determined by applying 
a sinusoidal voltage perturbation whilst tracking the current response 
[130]. To obtain a linear voltage-current response, which is essential to 
impedimetric measurements, only small (~10 mV peak to peak) [126] 
perturbations are typically applied. The linearity of the voltage-current 
response in the range of frequencies studied can be evaluated by fitting 
the experimental data using a special equivalent circuit comprising a 
series of resistance and capacitance in parallel (described by Kronig-
Kramers relations [131]). It is, additionally, worth noting that small 
amplitudes are non perturbatory in terms of underpinning receptive 
film chemistry and biochemistry. 

A typical experimental set up configuration in impedance 
measurements consists of three electrodes. The current response 
is measured at the working electrode, at which the receptive film 
is constrained [129]. A reference electrode, such as Ag/AgCl (KCl 
saturated or 3 M) or calomel is used to maintain a fixed and reproducible 
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absolute electrical potential [132]. A counter electrode (a platinum 
plate with area typically ten times larger than the working electrode 
[129,133]) allows electron flux between it and working electrode 
[126]. The instrumentation is essentially composed of a potentiostat/
galvanostat and a frequency response analyzer (FRA). The FRA sends a 
sine wave of a particular AC amplitude voltage to the potentiostat and, 
simultaneously, imposes a command voltage and measures the current 
response [126,127].

Mathematically, the complex impedance (Z*) is the ratio between 
the voltage time-function (V(t)=V0 sin(ωt)) and the resulting current-
time response function (I(t)=I0 sin(ωt+ϕ)) (Eq. 1):

* 0
*

0

sin( )( ) 1( )
( ) sin( )

V tV tZ
I t I t Y

ωω
ω ϕ

= = =
+ 		               (1)

Where V0 and I0 are the maximum voltage and current signals, 
ω is the angular frequency (ω = 2πf), f is the frequency, t the time, 
ϕ is the shift phase and Y* is the complex admittance (related to the 
conductance). The impedance is generally determined at different 
frequencies, obtaining an impedance spectrum (Z*(ω)). The Z* function 
is described as a complex number, Z*(ω) = Z′+jZ″, where 1j = − , Z′ 
and Z″ are the real and imaginary parts, respectively. The Z* value can 
be represented by the modulus Z, the phase shift ϕ, Z′ and Z″ (Figure 
5). To interpret the impedance results, the data can be analyzed in two 
different ways: a Blode plot, which plots log Z and ϕ as a function 
of log f, or a Nyquist plot that plots -Z″ versus Z′ (by convention in 
electrochemistry they just referred as Z″ versus Z′ plot and the minus 
signal in -Z″ is implicit).

The impedance characteristics of a modified electrode interface 
can be innate or probed through the addition to solution of a diffusing 
redox probe. For example, electrochemical reactions on metallic 
surfaces can be monitored by an alternating current that is forced 
to pass through the interface metal/solution. A redox probe, such as 
an iron or cobalt complexe [91,127], are oxidized or reduced on the 
surface depending on the applied potential. A change in the interfacial 

properties, such as that caused by adsorption of a specific target analyte, 
will disturb the electrochemical reaction and a more resistive behavior 
(higher impedance) can be expected. Alternatively, innate capacitive/
dielectric features of the interfaces can be used analytically [128]. The 
association of a biomolecule with a bare of modified solid electrode 
surface will lead to a displacement of water and hydrated ions from 
the immediate region, changes detectable through associated change 
in capacitance and, consequently, the impedance [128]. The former 
approach, which is by far the more common, is known as “faradaic” 
and includes an amplification of any changes at the interface as sensed 
(sterically or electrostatically) by the solution probe [91,126,129]. 
The latter “capacitive” approach does not require the pre-doping of 
analytical solution with a large excess (usually several mM) of redox 
probe is the “non-faradaic” approach [91,126,128]. Though somewhat 
less predictable in terms of change expected on target recruitment from 
solution, this approach can also be exceedingly sensitive [128,134]. As 
described in Table 1 both approaches have been successfully applied to 
the sensitive detection of clinically relevant targets.

Target Associated disease or state Impedance approach Linear range Limit of Detection Ref.
Alpha-synuclein autoantibody Parkinson’s disease Faradaic 75 - 1500 ng/mL 8.2 ng/mL [105]
Antibodies against hemmaglutinin (HA) Influenza A (virus H5N1) Faradaic 0.004 - 0.020 ng/mL 0.002 ng/mL [106]

C-reactive Protein (CRP) Cardiac events and inflammation
Non-faradaic 0.025 - 25 ng/ml 0.032 ng/mL [107]
Faradaic 59-1180 ng/mL 31 ng/mL [74]
Redox-capacitive 5.9-11800 ng/mL 3.3 ng/mL [108]

D-dimer Thrombosis Faradaic 0.0001 - 2000 ng/mL 0.0001 ng/mL [109]
Human epidermal growth factor receptor-3 
(HER-3)

Tumor breast and non-small-cell lung 
carcinoma Faradaic 0.0002 - 0.0014 ng/mL N/A [110]

Human hepatocellular carcinoma cells 
(Bel-7404) Liver cancer cell Faradaic 1000-1000000 cells/mL 234 cells/mL [111]

Immunoglobulin A Immune system disorders Faradaic 0.01 - 100 ng/mL 0.01 ng/mL [112]

Insulin Diabetes
Non-faradaic 0.0006 - 1.20 ng/mL 0.0003 ng/mL [100]
Faradaic 0.029-290 ng/mL 0.007 ng/mL [72]

Interleukin-6 (IL-6) Cancer and inflammation
Faradaic 0.00000001 - 0.0001 ng/mL 0.00000001 ng/mL [113]
Non-faradaic 0.025 - 25 ng/ml 0.32 ng/mL [107]

Human breast adenocarcinoma cell line 
(MCF-7) Breast cancer Faradaic 100 – 10000 cells/mL N/A [114]

Murine double minute 2 (MDM2) Brain tumor Faradaic 0.001 – 1000 ng/mL 0.00029 ng/mL [115]
Myoglobin Acute myocardial infarction Faradaic 10 - 650 ng/mL 5.2 ng/mL [116]
Prostate specific antigen (PSA) Prostate cancer Faradaic 0.001 - 0.1 ng/mL 0.001 ng/mL [117]
Prostatic acid phosphatase (PAP) Prostate cancer Redox-capacitive 5-1000 ng/mL 1 ng/mL [108]
Streptococcus piogenes cells Bacterial infection Faradaic 10 – 10000 cells/µL N/A [118]
Tumor necrosis factor-alpha (TNFα) Cardiac events and inflammation Non-faradaic 0.025- 25 ng/ml 0.32 ng/mL [107]

Table 1: Examples of impedance and redox capacitive biosensors.

a)                                                                b)

Po
te

nt
ia

l (
V) Potential

Current

V0
I0

ϕ
ϕ

Z

Z-

Z’Time (s)

C
urrent (A)

”

Figure 5: (a) Time domain measurements of an impedance analysis at a 
single frequency. A sinusoidal voltage perturbation (amplitude V0) and the 
sinusoidal current response with amplitude  I0  has a phase angle ϕ. (b) 
The impedance value associated to the data from (a) can be described as 
the modulus Z , ϕ and the real Z′ and imaginary  Z″ parts, respectively 
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Faradaic impedance

In all forms of impedance, as noted above, the data acquirement is 
that of current as a function of time as the voltage waveform is applied. 
The relationship between applied oscillating voltage and observed 
oscillating current is analyzed by considering the experimental 
configuration (that is, the surface and its associated solution) to be 
composed of circuitry elements (an “equivalent circuit” of resistors 
and capacitors, typically called the Randles circuit – (Figure 6b)). Four 
elements are used to understand the relationship between current and 
voltage: the current impediment in an AC potential. These are solution 
resistance (RS), double layer capacitance (Cdl), electron transfer 
resistance (Rct) and Warburg impedance (Zw) [126,127,129,135,136]. 
The solution resistance is related to the conductivity/mobility of the 
redox probe in solution and is not affected by biorecognition events at 
the electrode surface [91]. The double layer capacitance is an intrinsic 
feature of polarized electrodes immersed in electrolyte solution. 
Depending on the potential applied to the electrode, ions of opposite 
charge will approach the surface, forming a separated double layer 
[126]. The capacitive element is usually replaced by a constant phase 
element (CPE) to reflect the non-ideality of the surface capacitance 
[126]. The electron transfer resistance quantifies the electrostatic and/
or steric barrier presented to the redox probe at the surface (Figure 
6). The Warburg impedance, which is not used for analytical proposes, 
represents the unperturbed diffusion of the redox probe in bulk 
solution towards the electrode, down a diffusion gradient [127].

The capacitive element (double layer capacitance) in the Randles 
circuit is well described by the Gouy−Chapman−Stern (GCS) 

theory [132]. In this approach, the electrode immersed in a solution 
containing ions (modeled as spherical charges embedded in a solvent 
dielectric continuum) raises a capacitance that is a series combination 
of two capacitances: the Helmholtz capacitance (CH) and diffuse-layer 
capacitance (CD) (Eq. 2):

1 1 1

dl H DC C C
= + 				                 (2)

This “native” double layer capacitance is affected by an introduction 
of a monolayer film (dielectric layer) between the electrode and the 
solution, generating a new term, the monolayer capacitance Cm [137] 
(Eq. 3):

1 1 1

m b dlC C C
= + 			         	              (3)

 

where Cb is the capacitance of the film without ionic ingress in 
the monolayer and is primarily composed of field induced dipoles. 
Additional ingress of ions into the film creates new charging elements 
and two terms, Rt and Ct, used to quantify the SAM dipolar relaxation 
characteristics [137]. Since Cm > Cb (Cb dominates the capacitive 
interfacial response) [137], the capacitive response in the Randles 
circuit can be replaced to a series resistive (Rt) and capacitive (Ct) terms 
in parallel to Cm (Figure 7).

As noted, the Rct parameter is predominantly used in faradaic 
impedance sensors to signal transduction. Elshafey et al. [115] 
for example, have reported an impedimetric immunosensor with 
a low LOD (0.29 pg/mL in buffer and 1.3 pg/mL in mouse brain 
tissue homogenate) for Murine double minute 2 protein (cancer 

a)                                              b)

                                  d)

c)

Cdl

(1)        (2)

Rct

Rct

Rs

Rs l

ZW

receptor

target
Frequency

decrease (Hz)

Gold electrode
SAM, avidin, protein G, etc.

[Fe(CN)6]
3-/4-

[Fe(CN)6]
3-/4-

-Z
” (
Ω
)

Z’ (Ω)
Figure 6: Schematic representation of an faradaic impedance measurement. a) A sensing surface compromising a receptor attached above the gold electrode. A redox 
probe (here [Fe(CN)6]

3-/4-) has to approach the surface to exchange electrons and is faced with a barrier, quantified by Rct,  generated by the receptive film, any bound 
target and the supporting chemistry. The electrochemical behavior of the system (solution with the redox probe and sensing electrode) can be described by the Randles 
equivalent circuit, as shown in (b). When targets are recruited from the solution (receptor-target interaction) the additional layer formed at the surface further increases 
the blocking effect and Rct (situation 2 in Figure 6d).  Change in Rct can thus be used as a direct reporter of specific target presence. In Figure 6d, a hypothetical Nyquist 
plot for items a and b is shown. In the abscissa is shown the resolution of Rs and Rct from experimental data.
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biomarker). Within this work the authors immobilized the antibody 
on a polycrystalline gold electrode functionalized with cysteamine via 
a cross-linking agent. The measurements were carried out using PBS 
solution containing [Fe(CN)6]

3-/4- probe redox. The target associated Rct 
increase yielded a linear relation with logarithm of concentration.

Johnson et al. [138] have reported a faradaic impedimetric 
biosensor to detect CRP (a cardiovascular marker) in serum. In this 
work, a carboxylate terminal thiol film on gold was used to tether 
specific receptive protein affimers or antibodies, with, again, Rct 
determined by the equivalent circuit shown in Figure 7b [137]. Using 
a similar approach, Bryan et al. [76] constructed an impedimetric 
sensor for CRP quantification in dilute blood serum with an LOD at 
picomolar concentration levels. Fernandes et al. [74], in physically 

immobilizing anti-CRP at a mixed SAM functionalized electrode, 
designed an impedimetric sensor to quantify CRP in a linear range of 
0.5-10 nM and LOD of 0.3 nM [74].

Barton et al. [117] developed a sensitive faradaic impedimetric 
assay for prostate specific antigen (PSA) detection (the most commonly 
utilized prostate cancer marker; at 4-10 ng/ml, there is a documented 
~20% cancer probability, with this rising to ~70% when levels exceed 
10 ng ml-1) [139,140]. Here, the authors immobilized biotin anti-PSA 
using the previously outlined biotin/avidin protocol and, achieved 
target detection with a linear range of 1-100 pg/mL and a LOD of 1 
pg/mL [117]. Chiriacò et al. [141] using a different immobilization 
approach, reported two different impedimetric arrays to quantify free 
and complexed forms of PSA. In this work anti-free PSA or anti-total 
PSA capture agents were electrode immobilized via protein A, itself 
pre-immobilized on a functionalized carboxylic thiol electrode. The 
authors reported assays with a linear range of 1-10 ng/mL and LOD 
of 1 ng/mL.

A sensor to detect thrombin was developed by Xu et al. [142] using 
a histidine labeled thrombin aptamer (His-TBA). For this work, the 
authors electrogenerated a poly(pyrrole- nitrilotriaceticacid) film at a 
Pt electrode surface prior to recruiting the aptamer through its HIS-
tag mediated copper ligation (this methodology also allows facile 
surface regeneration using imidazole). The sensor developed an LOD 
of 4.4 pM and a linear range of 4.7 pM-0.5 nM. Ocaña and del Vale 
designed a faradaic impedimetric sandwich type biosensor to detect 
thrombin even more sensitively (LOD of 0.2 pM) [143]. In the first 
step, they immobilized the biotin labeled aptamer (AptThrBio1) onto 
an electrode functionalized with avidin and blocked unspecific sites 
with poly(ethylene glycol). After incubation with target, the sensors 
were exposed to a second biotin labeled aptamer (AptThrBio2) with 
subsequently reaction with gold-streptavidin nanoparticle and silver 
enhancement via catalytic reduction. This approach yields a sensitive 
sensor to thrombin in a linear range of 0.1-100 pM. 

Although the summary in Table 1 is necessarily only a representative 
survey of faradaic EIS sensor examples, the vast majority of Rct signal 
transductions are associated with an (conceptually expected) increase 
in this parameter with target surface recruitment. However, Rodriguez 
et al. [41] reported an assay in which biorecognition is associated with 

Figure 7: a) Randles equivalent circuit and an (b) alternative picture 
considering the SAM (dielectric layer) contributions in the capacitive response 
of a system comprising electrolyte (not shown), a sensing surface and the 
SAM (c).

Figure 8: In an approach reported by Rodriguez et al. [41], biotin labeled aptamers were immobilized at an electrode previously functionalized with streptavidin. 
The initial high levels of electrostatic repulsion are attenuated when cationic target lysozyme (added in µg/mL levels) is recruited from solution.
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a decrease in Rct. The basis of this was the strong electrostatic repulsion 
initially set up between the recognizing nucleic acid aptamer capture 
agent and the anionic (Fe[CN)6]

3-/4-) solution probe. The capture 
of a cationic target (where experimental conditions are such that 
pH<pI) attenuate the repulsive charge, and, consequently, Rct [41]. 
Here an effective assay of lysozyme was achieved [41] (Figure 8).

In addition to its extensive application to the quantification of 
proteins, EIS has been used successfully to detect cells, including bacteria 
[118] and cells related to specific disease states [114]. Impedimetric 
biosensors have, for example, been applied to the detection of 
monocytes with CD14+ and CD16+ expression [6]. Monocytes are a type 
of white blood cell responsible for organism defense against infectious 
pathogens and inflammation [144]. An increase in the blood level of 
monocytes with CD14+ and CD16+ expression represents evidence of 
severe bacterial infection [5]. In achieving an effective assay, Montrose 
et al. [6] immobilized the anti CD14 or CD16 antibodies at a protein 
G functionalized gold electrode prior to running a relatively standard 
faradaic EIS assay. 

In an application to cancer cell detection, Hu et al. [111] 
immobilized concanavalin A (Con A), a mannose specific lectin, on 
gold electrode prior to a faradaic assay. The device was able to detect 
selectively human hepatocellular carcinoma cells (Bel-7404, a liver 
cancer cell) in a linear range of 103-106 cells/mL with LOD of 234 cells/
mL [111]. Seven et al. [114] designed an impedimetric immunosensor 
to detect MCF-7 cells (102 – 104 cells/mL) with overexpressed c-erbB-2 
receptors (markers of breast cancer). In this case, experimental Rct data 
were obtained using hydroquinone as a redox probe after incubation 
with cell samples, with an achieved limit of quantification (LOQ) of 
100 cell/mL. 

Interdigitated array microelectrodes (IDAM) have also been 
applied to impedance based biosensing. These electrodes present several 
advantages, such as the rapid establishment of steady-state, facile rapid 
reaction kinetics, and associated increases in sensitivity (although 
equivalent circuits can be somewhat more complex than those 
typically associated with single planar electrodes) [112,145,146]. In one 
application, Ohno et al. [112] used a gold interdigitated electrode to 
build a label-free human immunoglobulin A (IgA) immunosensor. 
The electrodes were first functionalized with 3-mercaptopropionic 
acid, the antibody covalently tethered and the surface then backfilled 
with BSA solution. A linear response in Rct was obtained for a 
concentration range of 0.01-100 ng/mL, yielding an assay with LOD 
of 0.01 ng/mL. Bhansali and coworkers [145] developed an assay to 
detect cortisol (a stress-related biomarker) in saliva by an immobilizing 
a monoclonal antibody covalently onto a gold electrode previously 
functionalized with dithiobis(succinimidyl propionate) (DTSP) self-
assembled monolayer, and then used glycine/ethanolamine solution 
mixture to block unspecific sites. The assay was able to detect cortisol 
in a linear range of 1 pM to 10 nM and LOD of 1 pM [145]. In another 
example, Xu et al. [147] designed an interdigitated gold electrode 
assay to detect IgE. In this case, the authors immobilized an IgE thiol-
modified aptamer, consisting of single-stranded DNA containing a 
hairpin loop, directly on gold surface. This methodology was able to 
detect IgE in a linear range of 2.5-100 nM with LOD of 0.1 nM.

Non-faradaic impedance

The main difference between non-faradaic and faradaic 
impedance approaches is the need for a redox active probe. In non-
faradaic impedance, transduction occurs not through changes in 
the impediment presented to a solution phase probe but to surface 

dielectric, charge distribution or local conductance, most commonly 
assessed through capacitance [128]. The capacitance arises when an 
electrode is immersed in an electrolyte solution and a certain potential 
is applied. In this condition, charged species and dipoles will be 
oriented on the interface electrode/solution, generating the previously 
mentioned electrical double layer capacitance, a physically measureable 
quantity potentially very sensitive to interfacial change. This change 
may be induced when a protein target binds to the receptor, previously 
attached in the electrode, displacing water and ions from the surface 
[148], or due a changing in protein conformation [128].

The capacitance of a biorecognition surface in non-faradaic 
approach can be described as a combination of two capacitances (Figure 
9). The first capacitance consists of an insulating layer, comprised by a 
SAM on gold and double layer (Cm). The second capacitance (Crec) is 
related to the formation of a receptor biofilm (biorecognition layer). 
The binding event (target-receptor biorecognition) generates a third 
layer, (Ca). The total capacitance (C) obtained by the combination in 
series of these three components: (Eq. 4)

1 1 1 1

m rec aC C C C
= + + 				                 (4)

From Eq. 4, the total capacitance is dominated by the lowest 
component and this observation is important in capacitance sensor 
design, in which the capacitance of the insulating layer has to be high as 
possible to allow detect changes in the system caused by target binding 
[128]. This means that the insulating layer has to be impermeable to 
ions from solution, otherwise this will lead to a decrease or absence of 
the signal [128].

The total capacitance can be experimentally obtained by two 
methodologies: electrochemical impedance spectroscopy (EIS) or 
potential step amperometry. The EIS, as discussed previously in 
Fundamentals of EIS Section, measures the current response due 
an application of a perturbative sinusoidal voltage. The range of 
frequencies commonly used is around 10 kHz [128]. In the potential 
step amperometry, it is measured the response current due a potential 
perturbation step (around 50 mV) in a same frequency [128]. Measuring 
the current in low electrolyte concentrations, condition where the time 
constant (τ = RS C) is high and hence measurable, the current response 
is given by: (Eq. 5)

( ) exp
S S

U ti t
R CR

  −
=   
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				                  (5)

Where i(t) is the current in the circuit in function of time, U the 

Electrode surface
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Analyte
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Figure 9: Schematic representation of a capacitive biosensor. The 
capacitive behavior can be described by an association of three capacitors: 
the capacitance due the insulating layer,  Cm (SAM and double layer),  Crec 
represents the capacitance of the receptive layer and Ca  is the capacitance 
related to the biorecognition film.
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pulse potential (the magnitude) applied, RS the solution resistance, t 
the time elapsed after the potential step application and C the total 
capacitance (in other words, the equivalent capacitance) measured at 
the working electrode/solution interface [128]. This function can be 
easily linearized as follows: (Eq. 6)

ln ( ) ln
S S

U ti t
R CR

= − 				                 (6)

Then, C  and SR  can be extract from the slope and intercept of the 
linear least-square fitting of ln i(t). 

Capacitive approaches have invested in the use of both aptamers 
and antibodies as recognition elements [149-152]. For example, 
Dijksma et al. [153] immobilized a specific antibody (MD-2) above 
SAM modified gold electrode to detect interferon-γ (biomarker for 
autoinflammatory and autoimmune disease). The authors used a flow 
cell, injecting controlled amounts of target followed by buffer washes 
(PBS). The methodology adopted was able to detect the target across 
a range of 0-0.00000014 ng/mL and LOD of 0.00000002 ng/mL [153].

Thavarungkul and coworkers [151] compared the target recruiting 
performance of covalently tethered anti-alpha-fetoprotein at thiourea, 
thioctic acid and 3-mercaptopropionic acid SAM interfaces. The three 
interfaces exhibited the same linear range (0.01-10 µg/mL) with very 
comparable sensitivities and detection limits [151]. Using a similar 
thiourea SAM gold modified electrode, Limbut et al. [152] developed 
an immunosensor able to detect carcinoembryonic antigen (cancer 
biomarker) in a linear range of 0.01-10 ng/mL and LOD of 10 pg/mL 
with an apparent ability to be extensively reused.

Lin et al. [154] developed a sensitive impedimetric non-faradaic 
EIS assay to detect two cardiac biomarkers (CRP and myeloperoxidase) 
in human serum. The configuration consists of a gold electrode surface 
coated with a nanoporous silica membrane, the later forming nanowells. 
The underlying gold surfaces were functionalized with a dithiobis-
(succinimidyl propionate) crosslinker, streptavidin, then biotinylated 
antibody. The immunoreaction was monitored by analyzing the 
change in capacitance associated with double layer perturbation within 
the nanowells. Using this approach, the researchers claimed to be able 
to detect both biomarkers in pg/mL levels in human serum [154]. 

Antifouling surfaces for capacitive biosensing approach are possible 
using zwitterionic polymers previously mentioned. For example, Luo 

et al. [100] developed a sensitive non-faradaic impedance biosensor to 
detect insulin in neat blood serum. In this work, the receptor (anti-
insulin antibody) was immobilized on a non-fouling zwitterionic 
polymer (carboxybetaine methacrylate, PCBMA). Biorecognition was 
sensitively (at fM levels) tracked through change in phase between the 
input voltage and the output current, an ability retained in serum [100].

There are, then, interesting examples of capacitive biosensors 
capable of quantifying important biomarkers with low limits of 
detection (picogram levels). In addition, from a practical point of view, 
the absence of a redox couple in solution during the analysis makes the 
associated non-faradaic approach more translatable to point-of-care 
devices. In the next section, we will discuss a new approach to develop 
sensitive biosensors (LOD in picomolar levels) that is unnecessary 
adding redox probe: the capacitance redox biosensing.

ECS Biosensing
When a voltage polarized metallic interface is placed in an 

Figure 10: An electrode surface confined redox group contributes to a 
substantial potential dependent interfacial charging that can be sensitively 
probed and frequency resolved by impedance derived capacitance 
spectroscopy, i.e. ECS approach. In utilising the sensitivity of this charging 
fingerprint to redox group environment one can seek to generate derived 
sensory configurations. Generally, exemplified through the generation of 
mixed molecular films comprising ferrocene and antibody receptors to 
clinically important targets, the surface engineered with the specific purpose 
to use Cr  as transducer signal is very sensible for biosensoring. Reprinted 
with permission from J. Lehr, F. C. B. Fernandes, P. R. Bueno and J. J. Davis, 
Analytical Chemistry, 2014, 86, 2559-2564. Copyright (2014) American 
Chemical Society.
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Figure 11: a) Schematic representation of the interfacial impedance of the receptive interfaces used in biosensoring. b) The equivalent circuit capable of modelling 
impedimetric biosensor data where redox probe is present in solution phase. The Warburg element ( wZ ) accounts for the bulk diffusion characteristics of the 
redox probe and ctR is the redox charge transfer resistance. The electrolyte resistance ( sR ) is modelled in series with the above total interfacial impedance (see 
(a)) and generally it is not important in the prevaling analysis once it does not vary. c) Is the appropriate equivalent circuit capable of modelling electrochemical 
capacitive biosensors. Note that interfacial capacitance of a monolayer dielectric modified electrode is defined by two series capacitances, those of the monolayer 
( mC ) and of the double-layer ( dlC ) where >> mdlC C , meaning mC dominates in analyses and is, therefore, the only capacitance represented in the equivalent circuit 
showed in these equivalent circuit models. Furthermore,  <<m tC C in a way that tR and tC control the monolayer dielectric (non-faradaic) response [137,160-
163]. Reproduced with permission from reference [74].
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electrolyte, there is established, as previously noted, a double layer 
capacitance (storage). This is modified in the presence of a molecular 
film but is retained in some form. If a film is present which includes 
an entity which can be faradaically charged i.e. is redox active then 
an additional charging element is present – this has commonly been 
termed (in electrochemical literature) pseudocapacitance. The relative 
magnitudes of these two storage contributions depend sensitively on the 
surface and solution composition but, in general, pseudocapacitance is 
markedly higher. 

Very recently we have shown that the loosely described 
pseudocapacitance associated with surface confined redox events 
represents a specific manifestation of the general mesoscopic 
capacitance principles introduced by Marcus Büttiker [155]. We have 
specifically referred to this as redox capacitance (Cr) and detailed its 
origin as exactly that which arises due to the communication of the 
metal density of states [gm (E)] to a redox site molecular density of states 
[gr (E)] [156,157]. This capacitance is measured through impedance-
derived electrochemical capacitance spectroscopy, ECS. We have 
further shown that this experimentally resolved capacitance (without 
the contribution the non-faradaic components as described previously) 
is, in fact, comprised of two distinct contributions thus: (Eq. 7)

1 1 1

r e qC C C
= + 				                                  (7)

where Ce = dq/dV is the electrostatic or geometrical capacitance 
arising from charge separation in the normal (classical) way and Cq is 
the quantum capacitance, arising very specifically from the chemical 
potential changes associated when charging a nanoscale mesoscopic 
entity [155]. Cq is specifically defined as [156]: (Eq. 8)
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		                                 (8)

Since gm (E)>>gr (E), i.e. the electronic density of states in the metal 
is much higher than that of molecular redox states chemically attached 
over the electron reservoir, this reduces to Cq = e2gr (E) [156]. Statistically, 
for a distribution of states, above absolute room temperature, gr (E) is 
given (meaning experiment observed) by a Gaussian redox density of 
states defined as [158]: (Eq. 9)
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r e
r e
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			                 (9)

Where σ is the standard deviation (and σ2 the variance) of the 
multiple energetic states possibles. 

In recent work we have shown that this resolved Cr charging 
element can be very effectively used as a transduction of biological 
recognition events [74,102,108]. These are label free assays and do not 
require any pre-doping of the analytical solution with redox probe 
(in effect, the redox probe is constrained at the electrode surface and 
analysed through its highly potential dependent charging, Figure 10). 
This approach benefits from the fact that the transducing signal is 
cleanly separated from background through its specific frequency and 
voltage dependence and requires that a mixed surface film is prepared, 
that is, one which comprised a redox capacitance unit and a recognition 
element (Figure 12).

The Cr signal itself is obtained from Z*(ω) which is converted 
mathematically to capacitance using the relationship C*(ω)=1/iωZ*(ω), 
in which ω is the angular frequency and 1i = −  (more details can 
be found in references [137,158]). A complete circuit description of 
these interfaces (or those more generally associated with a dielectric 

component and a redox active component) and more detailed 
comparison between EIS and ECS approaches and responses are shown 
in Figure 11 [137,160-163].

It is important to note that any change in the environment of 
the redox tethered sites causes a change in the storage capability 
of the molecular layer with a consequent change in Cr. This was 
initially demonstrated in an assay of CRP [102] using a mixed SAM 
compromising a tethered redox probe (11-ferrocenyl-undecanethiol) 
and pentadecanethiol on which the receptive antibodies were 
physisorbed. Assay performance was comparable to that reported in 
previous work [76,138]. 

An improvement in assay capability was subsequently by 
Lehr et al. [108] using a different mixed SAM. In this case, the film 
comprised a thiol-PEG-CO2H (to antibody covalent attachment) and 
11-ferrocenyl-undecanethiol (probe redox). Within the same work, the 
authors used a similar approach to establish a sensitive immunoassay 
for PAP (besides CRP), a prognostic marker for prostate cancer. Both 
markers were quantifiable across their clinically relevant ranges and in 
following redox capacitive changes as shown in Figures 13 and 14.

Conclusion
A diverse range of interfacial strategies exist which can support 

the sensitive detection of proteins, small molecules and specific 
cells. Of the methods which are quantifiable and sensitive without 
requiring pre-labelling of the analytes, those based on electroanalyses 
are undoubtedly the most flexible in format and capability whilst, 
additionally, being both cheap and scaleable. In this short review, we 
have introduced some of the principles associated with electroanalytical 
detection of biomarkers, most specifically soluble protein markers. 
We have introduced general principles, exemplified with a range 
of examples and discussed the fundaments of the impedance and 
impedance-derived capacitive approaches. Impedimetric approaches 
can be both straightforward and highly sensitive and have largely been 
faradaic. One major challenge has been to translate a capability in 
highly controlled buffered aqueous solution to more complex samples 
and we have given examples of where recent strategies have enabled 
exactly this. Capacitive methods can be exceptionally sensitive without 
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target [Fe(CN)6]
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Figure 12: Comparative schematic representations of (a) faradaic EIS and 
(b) capacitive ECS biosensing [74]. (a) The faradaic impedimetric surface 
engineering is based in the electron transfer resistance ( ctR ) of the redox 
probe in solution to metal surface. (b) The capacitive approach does not need 
a redox probe in solution, but an electrode tethered one. The environmental 
sensitivity of this charging capability is used as the reporter of neighboring 
biorecognition. The associated equivalent circuits are presented in Figures 
11a and 11b respectively. Reproduced with permission from reference [74].
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Figure 14: Analytic capacitive curves reporting rC  for (a) CRP to CRP 
receptive interfaces and (b) PAP to PAP receptive interfaces. Plotted data 
points represent means and standard deviations across three measured 
interfaces in each case. Errors reported at 95% confidence. 2R (for CRP) is 
0.994 and 2R  (for PAP) is 0.990, where 2R  is the coefficient of determination. 
Reprinted with permission from J. Lehr, F. C. B. Fernandes, P. R. Bueno and 
J. J. Davis, Analytical Chemistry, 2014, 86, 2559-2564. Copyright (2014) 
American Chemical Society.

any pre-dosing of the analytical solution with a reporting “probe”. 
This sensitivity can, however, be accompanied by a struggle to either 
predict observations or to make them reproducible. We have discussed 
a new analytical methodology based on impedance derived capacitance 
spectroscopy and shown, not only that this is potent in analyzing 
dielectric films generally but also that it can be combined with surface 
tethered redox reporters in establishing highly sensitive label free 
assays based on “capacitive charging” (redox capacitance).
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