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Abstract

Fusion genes are neoplasia-associated mutations, which play a particularly significant role in tumorgenesis and
exhibit great importance for clinical applications in malignant hematological diseases and solid tumors.
Simultaneously with copy number variants (CNVs), gene fusions are resulting from balanced and unbalanced
chromosomal rearrangements. Thus, understanding the mutagenesis and instability of CNV, as well as the
underlying molecular mechanisms of chromosomal rearrangements will improve our comprehension of gene fusions.
Recently, next generation sequencing (NGS), especially transcriptome sequencing or RNA-Sequencing (RNA-seq),
has become a very useful tool to identify gene alterations in cancer and a powerful approach for investigating the
tumorgenesis. However, we are still facing with the challenge of minimizing false positives in results of RNA-seq.
Whole-genome sequencing (WGS) is also used for the fusion gene detection, which provides us a more
comprehensive and integrative way to detect structural variants. WGS may correct the false-negative results from
RNA-seq. Additionally; many computational tools with more sensitivity and specificity have been developed for the
detection of fusion transcripts from NGS datas. In the future, multi-omics analysis, third-generation sequencing and
liquid-biopsy technique all provide opportunities to comprehensively interpret gene fusions and understand the
biology of cancer genomes.

Keywords: Fusion gene; Next generation sequencing (NGS);
Transcriptome sequencing or RNA-seq (RNA-Seqencing); Whole
genome sequencing (WGS)

Introduction

Fusion genes, also called chimeric genes or hybrid genes, are
neoplasia-associated mutations arising from structural chromosome
rearrangements, such as chromosomal insertion, deletion,
translocation or inversion that juxtaposes two separated genes [1,2].
They have been reported to be important genomic events in human
cancer because their fusion gene products can drive the development
of cancer, and thus are potential prognostic markers or therapeutic
targets in cancer treatment. On the basis of transposons studies,
human cancers could also be the result of the translocations and
chromosome rearrangements which lead to the abnormal expression of
genes located at breakpoints [3]. Up to now, the current next
generation sequencing(NGS)-based approaches for detection, such as
transcriptome sequencing or RNA-Sequencing (RNA-seq) and whole
genome sequencing (WGS), have become a very useful tool to identify
new tumor-associated gene fusions and investigate their impact on

tumorgenesis [4]. In this study, we then comprehensively reviewed
NGS studies to detect gene fusions in malignant hematological diseases
and solid tumors, to update our knowledge about the advances and
challenges in the gene fusion detection through NGS, especially RNA-

seq.

Methods

The literatures searching was conducted on PubMed, ScienceDirect
and Google Scholar comprehensively, using keywords included "gene
fusion”, "RNA-seq'/"whole-genome sequencing"/"next generation
sequencing” AND "cancer"/ "tumor"/ "leukemia"/ "lymphoma". After
the relevant literatures were carefully read and analyzed, we found 71
publications directly related to our study purpose by this searching
method.

Fusion genes: tumorgenesis, biomarker and therapeutic
target

Fusion genes play a particularly significant role in tumorgenesis,
which has been identified with great importance for clinical
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applications [5]. Gene fusion events can be observed in cancer samples
more frequently than benign samples. They are present in
approximately 20% of all human neoplasms. Although the functional
outcomes of many gene fusions are still under exploration, it is well
established that most of them will lead to tumorigenesis. Since a strong
correlation can be found between recurrent gene fusions and tumor
types, gene fusion detection has been suggested to be used for
screening of common tumor types. Subtypes identification provides a
roadmap for targeted therapies. Although recent studies have thus far
defined a large quantity of gene fusions that involve different cancer
related genes, which constitute an important diagnostic and prognostic
parameter especially malignant hematological diseases and sarcomas,
gene fusions in solid tumors have rather limited clinical and biological
impact [5].

The BCR-ABLI fusion gene in the well-known Philadelphia (Ph)
chromosome is the prototypic fusion oncogene, which is associated
with chronic myeloid leukemia (CML). It is now used as a biomarker
during diagnosis and monitoring patient response to treatment. As
some morphologically homogeneous malignancies are heterogeneous
because of gene fusion status, they play an important role in treatment
stratification, such as different MLL fusions in AML or fusion-positive
versus fusion-negative Alveolar rhabdomyosarcoma (ARMS) [6,7].
Nowadays, many technologies have already been used in detecting
gene fusions and other genetic aberrations, such as chromosome
banding analysis, reverse transcriptase-polymerase chain reaction (RT-
PCR) and Sanger sequencing etc [8]. Except for the hematological
malignancies, large amount of data emerges from the studies of
malignant solid tumors, including most sarcomas and a few
carcinomas.

Ewings sarcoma is defined by a recurrent chromosomal
translocation between the EWSRI gene and various E7S genes, and
EWS-FLII is the most common gene fusion in Ewing’s sarcoma, which
present in 85% of cases [9]. In the study carried out by Saravana et al.
[10], genes such as CLKI, CASP3, PPFIBPI and TERT, which
potentially participate in oncogenesis, are alternatively spliced by
EWS-FLII. Thus EWS-FLII can be used as a diagnostic biomarker for
Ewing’s sarcoma. While, there are still many important questions to be
solved to understand the molecular mechanism of EWS-FLII and its
potential value for cancer therapy.

As is known, the oncogenic potential of E7Srelated gene (ERG) is
involved in Ewing’s sarcoma and leukemia. However, in the past
decades, ERG is found to be highly associated with prostate cancer
[11]. It is showed by Tomlins et al. [12] that ERG is overexpressed in
most prostate carcinomas because of a gene fusion with the androgen-
driven promoter of 7MPRSS2 gene. Many other studies have also
shown TMPRSS2-ERG gene rearrangements to be the most commonly
found 7MPRSS2:ETS family pairing in prostate cancer, demonstrating
the specificity of TMPRSS2-ERG for prostate cancer and a role for
TMPRSS2-ERG in the development and progression of prostate cancer
[13]. The TMPRSS2-ERG is showed to trigger carcinogenesis by
inhibiting apoptosis of prostate gland cells and at the same time,
increasing cell proliferation [14]. The proto-oncogenes ET'V1, were
also found to be highly expressed in a subset of prostate cancers [12].
Recently, it is recommended that the classification of prostate cancer
can be divided by distinct molecular subtypes, which includes mutually
exclusive ETS fusions (ETS-positive), SPINKI-overexpressing, and
CHDI-loss cancers etc [15]. In this way, a simple molecular barcode
(includes ETS/SPINK1/SPOP/CHDI/RAS-RAF/PTEN/TP53 status)
can be used in molecular prostate cancer subtypes, and thus may allow

stratification of patients for different management strategies in the
future.

Approximately 40%-70% of men with castration resistant prostate
cancers have ERG rearrangements, which may respond better to anti-
hormonal therapy than ERG-negative ones [13]. Currently, there are
many studies targeting at the 7MPRSS2-ERG fusion and its
downstream signaling. It was shown that knockdown of the 7MPRSS2-
ERG fusion in a cancer cell line can lead to primary tumour growth
inhibition, which made TMPRSS2-ERG a potential therapeutic target
[16]. There is also study showing that targeting the most common and
clinically significant alternatively spliced isoforms of the 7AMPRSS2-
ERG mRNA with specific siRNAs via liposomal nanovectors can be
promising therapy for men with prostate cancer [17]. For example,
siRNA has been used to target the BCR-ABL fusion successfully in
CML and against the AMLI-ETO in AML-M?2 [18]. Because specific
ETS factors could be found in many other solid tumor types, their
downstream effectors are very likely to be in common, therefore
providing more possible novel drug targets for treatment of these
malignancies.

Relatively few recurrent gene fusion events have been associated
with breast cancer. In a study of whole-transcriptome sequencing of
120 fresh-frozen primary breast cancer samples, six newly validated
gene fusions were recurrent, including three in-frame and three out-
frame ones [19]. A recurrent gene fusion, RPS6KBI kinase, and EGFR,
which is a therapeutically important receptor kinase and involving in
the rapamycin signaling, was discovered in the analysis of 14 breast
cancer cell lines [1]. Not only in common tumors, recent study also
indicated a novel FNI-FGFRI fusion gene might participate the
tumorgenesis of phosphaturic mesenchymal tumors (PMTs), which
typically cause hypophosphataemia and tumor-induced osteomalacia
(TIO) [20].

As people getting more into the clinical importance of gene fusions
and other types of genetic rearrangement, greater emphasis has been
putting on genetic features in the classification of neoplasms. In the
latest World Health Organization (WHO) classifications, translocation
and/or gene fusion status is mandatory for the diagnosis of some types
of tumors, such as “AML with t(8;21)(q22;q22), RUNXI-RUNXITT’
and “B lympho-blastic leukemia/lymphoma with t(5;14)(q31;q32), ZL3-
IGH’ [4]. And for other malignancies, the Xpl11 translocation renal
cell carcinomas (RCC) harbor gene fusions involving 7FE3, which is
among the MiT subfamily of transcription factors. Thus it was first
officially recognized in the 2004 WHO renal tumor classification [21].

Therapeutic approaches based on oncogene addiction can offer
significant anticancer benefit, among which the identification of
anaplastic lymphoma kinase (ALK) rearrangements is a key aspect. For
all the lung cancer patients, 4-8% can be detected with the EML4-ALK
gene fusion, especially in light smokers and nonsmokers [22].
Crizotinib was the first approved medication for ALK-positive
patients. In the phase III PROFILE 1014 study, crizotinib is associated
with a median progression-free survival of 10.9 months when used as
the first-line treatment [23]. Imatinib, the tyrosine kinase inhibitor,
which was the first drug that was specifically designed to target a
fusion gene, BCR-ABLI in CML. There are various other common
malignancies that have been shown to display various fusions
involving kinase-encoding regions, e.g. BRAF, FGFR3, NTRK1, RET
and ROS!I etc [4]. With more and more novel drugs under approval of
FDA regarding to these gene fusions, stratification of diagnosis and
treatment could be of great importance in clinical practice.
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Chromosome rearrangement: the origin of gene fusions

Chromosomal rearrangements are very pervasive in cancer, while
their impacts are hard to characterize and interpret [24]. Gene fusions
are resulting from balanced and unbalanced chromosomal
rearrangements. Balanced changes are the prototypical mechanism
behind gene fusions, including translocations, insertions and
inversions. While gene fusions can also arise through unbalanced
chromosomal rearrangements, such as interstitial deletions, as to a
deletion of an interstitial chromosomal segment. Both balanced and
unbalanced aberrations may lead to create a chimeric gene through the
fusion of parts of the two genes from each side of breakpoint, or
juxtapose the coding sequences in one gene with the regulatory
sequences of another gene from the other breakpoint. Even there
should be two derivative chromosomes and each of which may
harbour the pathogenetic gene fusion through a balanced
chromosomal rearrangement, usually only one of these genes will
produce an in-frame fusion transcript [4]. However, genes in one of
the breakpoints may also become truncated and lose their function as
haploinsufficiency. As the gene fusions can upregulate or deregulate
genes depending on the breakpoints, it may lead to tumorgenesis
through activation of oncogene or inactivation of tumor suppressor
gene.

Interestingly, gene fusion always occurred simultaneously with
CNVs, which also has a significant role in tumorigenesis in many
cancers, such as gastric cancer [25], ovarian cancer [26], hepatocellular
carcinoma [27], colorectal cancer [28], bladder cancer [29] and so on.
CNV involves deletions, duplications and insertions of DNA segments
larger than 1 kb, which is variable among individuals [30]. Many
seemingly balanced translocations that result in gene fusions are
accompanied by extensive deletions, duplications or amplifications
among the breakpoints [31,32]. In most cases, CNV generates more
than one breakpoint. When a breakpoint located between the
functional elememts of the two genes, a fusion gene may occur. Fusion
partner genes can be found to contribute promoters (5' UTR), coding
sequences and 3' UTRs. Consequently, genes affected by CNV are
potential candidates for fusion events [4]. Thus, understanding the
mutagenesis and instability of CNV, as well as the underlying
molecular mechanisms of chromosomal rearrangements will improve
our understanding of gene fusions.

In addition, transcript fusions may also originate from non-adjacent
genes without a corresponding fusion at the DNA level, resulting in so-
called transcription-induced gene fusions (TIGFs), including cis-
TIGFs (neighbouring genes located on the same DNA strand) and
trans-TIGFs (genes located far apart or on different chromosomes).
Some cis-TIGFs have been identified associated with particular tumor
types, which indicates TIGFs may play important roles in tumor
development [33]. Although trans-TIGFs have been identified in
human cells [34], no trans-TIGFs have yet been verified in any
independent studies [4].

Next generation sequencing (NGS): a high-performing
strategy for fusion gene discovery

Although cytogenetics and fluorescence in situ hybridization (FISH)
approach will continue to be indispensable tools for fusion gene
diagnostics in hematological diseases and solid tumors, the modern
high-throughput NGS have showed their great impact to identify new
tumor-associated gene fusions [35]. Recently, NGS has become a very
useful tool to identify gene alterations in cancer and a powerful

approach for investigating the tumorgenesis [36]. Chromosomal
rearrangements, such as deletion, duplication, translocation, insertion
and inversion, can be detected by paired-end information and
apparent fragment length and orientation of NGS [37]. Additionally,
chimera read analysis can detect gene fusions and also reveal their
breakpoints directly [37,38], and the de novo assembly approach can
be used for some complex fusions [39]. Over the past few years,
advances of NGS and affordable price provide an opportunity for
detection of cancer transcriptomes, including the expressed fusion
genes. The first NGS study to detect gene fusions in cancer were
carried out on cell lines [37], and quickly extended to numerous
investigations in different cancer types. As another landscape, Maher
et al. [40] successfully re-discovered the BCR-ABLI gene fusion in a
CML cell line and the 7MPRSS2-ERG gene fusion in a prostate cancer
cell line and tissues through RNA-Seq. Yoshihara et al. [2] queried
transcriptome data from 4,366 neoplasms from 13 different cancer
types, which had been studied within the Cancer Genome Atlas
(TCGA) network, and detected more than 8,600 different fusion
transcripts. During only the past 3 years, more than 9,000 novel gene
fusions have been identified mostly through NGS technologies [4],
while most of them have now been described as probably passenger
mutations which show little or no effect on tumorigenesis [2]. RNA-
Seq is a useful tool for the discovery of gene fusions in cancer
transcriptomes and has already become the primary technology for
discovering gene fusions. Some open databases of gene fusions in
cancer from RNA-seq data have been set up, including Fusion Cancer
[41], while we are still faced with the challenge of minimizing false
positives in RNA-seq result [19,40,42]. In addition, there are lower
proportions (about 3%) of recurrent fusion genes detected by RNA-seq
[4].

WGS is also pervasively used for the fusion gene detection [43].
And it provides us a more comprehensive and integrative way to detect
structural variants than RNA-seq, especially for de novo gene fusions.
WGS would correct the false-negative results from RNA-seq [4,42,44].
As an example, WGS revealed a distinct phenomenon named
“chromothripsis” [39], which means chromosomes in a tumor cell
produce hundreds of clustered rearrangements [45]. This complicated
rearrangement phenomenon was generated as distinct chromosomes
or genomic regions shatter into many segments, which are then pieced
together by DNA repair mechanisms inaccurately [46]. Recent WGS
study suggested this genomic instability phenomenon in cancers co-
segregated with inactivation of DNA maintenance genes, like BRCA1/2
[47], and increasing from patients with germline p53 mutations [48].
Some structural variants without producing fusion genes can also
change the expression of nearby genes by changing the functional
elements. Although RNA-Seq data can detect most of the
transcriptional fusions of these genomic alterations [13], there are still
much potential transcriptional consequences of structural variants to
be further explored. Integrating data from RNA-Seq and WGS would
disclose more genetic variants, as TIGFE. However, up to now, there are
only few studies comprehensively evaluate the transcriptional fusions
from WGS and RNA-Seq [49].

Due to widespread applications of high-throughput NGS
technologies, major advancements have been made in computational
strategies for fusion gene discovery in recent years [50]. Several
computational tools have also been developed for the detection of
fusion transcripts using RNA-Seq data, such as MapSplice[51],
ShortFuse[52], FusionHunter [44], FusionMap [53], SnowShoes-FTD
[54],defuse [55], chimerascan [56], FusionCatcher [57], TopHat-
Fusion [44], BreakFusion [58], EricScript [59], SOAPfuse [60],
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FusionQ [61] , PRADA [62] and JAFFA [63]. Liu et al.[64] performed a
large-scale comparative study by applying these above 15 fusion
transcript detection pipelines to 3 synthetic data sets and 3 real paired-
end RNA-seq studies and developed a meta-caller algorithm to
combine three top-performing methods (FusionCatcher, SOAPfusea
and JAFFA). If possible, it is recommended to apply all three above
pipelines and combine the results in applications. FusionMatcher
(FuMa) is a recently designed fusion genes identical program which
can automatically compare and summarize all combinations of two or
more datasets in a single run and use one gene annotation, to avoid
mismatches caused by tool specific gene annotations [65]. It’s believed
that both WGS and RNA-seq have their limitations when used
independently, and orthogonal validating both data could generate a
more sensitive and specific gene fusion detection. To integrate both
RNA-seq and WGS data, INTEGRATE was developed to analysis both
data to reconstruct gene fusion junctions and genomic breakpoints by
split-read mapping. As a result, it was confirmed to be a highly
sensitive and accurate approach for detecting high-confidence gene
fusion predictions [66]. However, developing the new generation of
fusion genes identifying tools from RNA-seq or other NGS data with
both sensitivity and specificity remains an important and open
question.

Perspective

Gene fusions have strong association with CNVs and whole
genomic instability in cancer, which makes it impossible that revealing
the complete genomic consequence through only one strategy up to
now. In the future, multi-omics analysis of molecular data, such as
DNA sequence mutations, CNVs, RNA profiling, DNA methylation,
protein expression and chromatin structure may be required to
comprehensively interpret gene fusions in order to understand the
biology of cancer genomes. Another integrated approach should be
done to interpret gene fusions and identify their impact. It is better to
combine the NGS result with high-throughput functional cellular
assays and more functional data in cancer genomics. In addition,
third-generation sequencing which can produce long read sequences is
now attempted to clarify complicated genomic structures, including
gene fusions, in cancer genome [67].

Nowadays, as the circulating tumor DNA (ctDNA) and circulating
tumor cells (CTCs) are more frequently utilized in research and
clinical medicine, the ‘liquid biopsies’ can provide the opportunity to
promptly track cancer genome evolution of all cancerous lesions [68].
With the rapid development of highly sensitive and accurate
technologies of NGS, it can not only predict the response to treatment,
but also monitor minimal residual disease [69,70]. As an example,
FGFR2 fusion in ctDNA was readily detectable by quantitative real-
time reverse transcription-polymerase chain reaction and
corroborated to be more sensitive and specific than previous
biomarkers, such as CA125 [71]. It is promising that fusion genes can
be detected by NGS in liquid biopsies, in the near future.
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