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Introduction to Electrolytic Systems
Any electrolytic system is described with use of charge and material 

balances referred–in principle–to closed systems, separated from 
the environment by diathermal walls. The latter assumption enables 
any process occurred in the system to proceed under isothermal 
conditions. Constant temperature (T) is one of the conditions needed 
to secure constancy of equilibrium constants K=K(T, I) values [1-8]; I 
is the ionic strength of the solution. Constancy of I value can be secured 
in the system of isohydric solutions [9-12], without the necessity of 
application of a basal electrolyte. 

The electrolytic systems are formed after introducing some solutes, 
into a solvent (considered as single substance) or a mixture of different 
solvents. Any system containing a mixture of two solvents forms a 
binary-solvent system [10,13], if the solvents are miscible at any mutual 
ratio. Two immiscible solvents form two separate phases in liquid-
liquid extraction systems [5,14,15].

The species in any electrolytic non-redox system are involved in 
charge and k concentration balances, referred to element(s) E(i)≠H, O, 
or to some clusters of atoms named as cores, involving these elements, 
E(i). In other words, charge and concentration balances, form a 
compatible set of k+1 equations needed for quantitative, algebraic 
description of non-redox systems. For redox systems, the new, 
compatible balance referred to electron transmission or distribution is 
needed. The principles of formulation of the k+2-th balance, known 
as the Generalized Electron Balance (GEB), were discovered by 
Michałowski, and presented as two equivalent Approaches: I [14,16-
24] and II [25-37] to GEB.

The Principles of Formulation of Approaches I and II 
to GEB

The Approach I to GEB is based on a “card game” principle, 

with electrons as “money”, electron-active elements as “players”, 
and electron-non-active elements as “fans”. In redox reactions, one 
(disproportionation, synproportionation) or more electron-active 
elements can be involved. The Approach I can be applied for any redox 
system, where oxidation numbers for all elements in the species present 
in it can easily be calculated. 

The Approach II to GEB is based on the balance 2∙f(O)–f(H), 
formulated for any redox system, as linear combination of the 
elemental balances: f(H) for H and f(O) for O, related to this system; it 
is named as the primary form of GEB, and denoted as pr-GEB=2∙f(O)–
f(H). The pr-GEB is linearly independent on other elemental/core 
balances and charge balance. All linear combinations of pr-GEB with 
other elemental/core balances and charge balance have full properties 
of GEB. For any non-redox system, 2∙f(O)–f(H) is linearly dependent 
on charge and concentration balances. This independency/dependency 
criterion, valid for any redox/non redox systems, can be extended 
on mixed-solvent systems with amphiprotic and aprotic solvents 
involved, particularly on binary-solvent media [33,36], where acid-
base properties of different solutes were tested [13,38].
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The GEB is put in context with the Generalized Approach to 
Electrolytic Systems (GATES) [28] as GATES/GEB. The GATES 
relates to redox [14-37] and non-redox [39-43] systems of different 
complexity.

In all instances, the species iz
i iWX n⋅  in the related solvents 

or mixtures of solvents are considered in their natural forms, i.e. 
as hydrates iz

i iWX × n in aqueous (W=H2O) media, or as solvates 
1
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Although the Approach II is equivalent to the Approach I, it offers 
essential advantages. The great advantage of the Approach II is that 
none prior knowledge on oxidation numbers of elements in complex 
species of definite (known or pre-assumed) composition, expressed by 
its formula and external charge it needed, particularly when complex 
organic substances, e.g., plant pigments, participating redox reactions 
are considered [44-48]. It should be stressed that redox reaction are 
usually involved in other (acid-base, complexation, precipitation) types 
of chemical reactions. Redox reactions can also be related to liquid-
liquid extraction systems [14]. Within GATES/GEB, the terms: oxidant 
and reductant are not ascribed a priori to particular species. The 
Approach II to GEB is applicable, inter alia, for redox systems where 
radical and ion-radical species are formed, as ones stated in the systems 
with Fenton reagents involved [28], or in the systems where oscillation 
reactions occur [18,28]. 

For calculation purposes, the set of (charge, GEB and concentration) 
balances is completed by the set of relations for independent equilibrium 
constants, interrelating concentrations of some subsets of species 
involved in the balances. The complete set of equilibrium constants 
provides all quantitative knowledge on the system in question. Some 
qualitative knowledge is also valuable; this knowledge is particularly 
desired in the case of metastable systems. The calculations are made 
according to iterative computer programs, particularly ones offered 
by MATLAB [28]. The GATES/GEB refers to redox systems of any 
degree of complexity, mono- and polyphase systems. Any equlilibrium, 
metastable and non-equilibrium, static and dynamic systems can be 
tested this way, with none simplifying assumptions needed.

GATES and Generalized Equivalence Mass (GEM)
From the GATES viewpoint, the stoichiometric reactions are only 

the basis to formulate the related equilibrium constants. Stoichiometry 
of reactions is not a primary concept in chemistry, and its application 
provides frequently false/caricatural results. GATES is also the basis for 
Generalized Equivalence Mass (GEM) concept [27], formulated with 
none relevance to the stoichiometry of chemical reaction notation. The 
GEM is a simple consequence of elemental balances, and is not involved 
with a stoichiometry of the reaction notation. Then GEM contradicts 
the definition of equivalence “weight” concept, still obligatory 
according to IUPAC decision and based on the reaction notation. 
From our viewpoint, stoichiometric equation is a vicarious (but not 
alternative!) concept when compared with mathematical equation 
applied for a given chemical/electrolytic system. From the GATES 
viewpoint, the stoichiometry is a superfluous concept provided that a 
sufficient physicochemical knowledge on partial reactions involved in 
a complex system is available.

Simulations on Metastable Systems 
In a complex system, many particular reactions occur; the 

resultant reaction is the superposition of these reactions occurred 
with different efficiencies, known only after thorough physicochemical 
examination of the system. The physicochemical knowledge is based 
on (a) equilibrium constant values, referred to the equilibrium system, 
and (b) information about possible paths of particular reactions 
occurred in the system in question. Not all path of chemical reactions 
are accessible, under defined conditions of analysis, involved with 
temperature and/or presence of catalytic agents. For this purpose, 
the balances are completed by some intermediary species that may be 
formed, and completed by the related standard potentials and other 
equilibrium constants. Different “variations on the subject” that can be 
done for this purpose, are involved with “opening” the reaction paths. 
In all instances, the relationships between measurable quantities, i.e., 
E or pH and volume V of titrant added can be compared with the 
relationships obtained experimentally. Some examples of this kind are 
presented in [22,28]. 

The GEB, charge and concentration balances, together with the 
set of independent equilibrium constants, provide the numerical 
algorithm, implemented to software packages that support advanced 
programming, such as MATLAB computing environment [28]. The 
calculation procedure enables to get the desired relationships plotted 
in 2D or 3D space. It involves the plots of E=E(Φ), pH=pH(Φ), and 
speciation curves, ( )log iz

i iX f  = Φ  .

Graphical Presentation of the Data–an Example
The plots of functions: E=E(Φ) and pH=pH(Φ), related to the 

system KIO3 (C0=0.01 mol/L) + HCl (Ca=0.02 mol/L) + H2SeO3 
(CSe=0.02 mol/L) + HgCl2 (CHg mol/L) titrated with C6H8O6 (ascorbic 
acid) are presented in Figures 1A and 1B. The curves are plotted at 
CHg=0 mol/L, and the curves b at CHg=0.07 mol/L; the effect of HgCl2 as 
the side component in reaction between iodate and ascorbic acid is thus 
illustrated. Figure 1B indicates an example of non-monotonic plots of 
pH=pH(Φ) functions [17]. The speciation curves referred to iodine 
species, at CHg=0 mol/L and CHg=0.07 mol/L, are plotted in Figures 2 
and 3. Among different curves presented in Figures 2 and 3, one can 
indicate the plots for solid iodine, I2(s), formed in intermediate part of 
the Φ-range; these parts of the related titration curves were discussed in 
[17,26,28]. It testifies on account of the opinion that the GATES/GEB 
provides far more valuable information than one gained from the well-
known Pourbaix diagrams.

Generalizing Remarks
This review paper, relating principally to redox systems, shows that 

such systems can be described using real math (algebra), not “chemical 
mathematics”, consisting in juggling with chemical reaction equations. 
Redox reaction play fundamental role in biological systems [44-48], 
where GATES could also be applied-provided that the appropriate 
physicochemical knowledge, expressed by the equilibrium constants 
relating to elementary components of such systems is available. So far, 
such knowledge does not exist.

On the basis of partial, physicochemical information concerning 
the species in electrolytic redox systems, a thermodynamic knowledge 
of complex systems in constructed. Therein lies-from the GATES 
viewpoint-a synthesis of knowledge about these systems. The complexity 
of chemical systems is irrelevant in the context of computational 
power of modern computers. Just the qualitative (composition and 
charge of the species) and quantitative (equilibrium constants) 
knowledge is needed. Qualitative knowledge enables to involve 
concentrations of components and species in the respective (GEB, 
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charge and concentration) balances, while the quantitative knowledge 
is determined by the interdependencies between concentrations of 
selected components, expressed by the equilibrium constants.

This knowledge applies to both static as well as dynamic systems. 
Information obtained from static redox systems, developed according 
to GATES/GEB principles, provides incomparably better quality 
of knowledge than obtained from the Pourbaix diagrams [49]. The 
plots obtained from GATES/GEB can be referred to any (not only 
predominant) species present in the system in question. Unlike the 

Pourbaix diagrams, potential E and pH of the system are calculated 
independently within GATES/GEB. Application of GATES/GEB to 
dynamic systems gives a new dimension, when compared with static 
systems.

An extremely important factor-especially when considering the 
biological systems-is an ensuring, that the knowledge of the oxidation 
degrees of the elements in simple or complex chemical species is 
unnecessary, from the point of view of the Approach II to GEB. In this 
respect, the necessary and sufficient knowledge is provided by chemical 
composition (expressed by chemical formula), and the external charge 
of particular species. In this context, it should be remembered that the 
oxidation degree of the elements is a contractual concept, perceived as 
the hypothetical charge that an atom would have if all bonds to atoms 
of different elements were ionic in 100% [50]. 

In the Approaches I and II to GEB, the species in electrolytic systems 
are considered in their natural forms, i.e., as hydrates in aqueous 
media, or mixed solvates in mixed-solvent media. Moreover, the roles 
of oxidants and reductants are not ascribed a priori to particular species 
in defined systems. This way, a kind of “democracy” is assumed in such 
systems.

After calculations and graphical presentation of concentrations of 
particular species on the related speciation diagrams, we can formulate 
the chemical reactions proceeding in the system in question, together 
with relative efficiencies of these reactions.

Final Comments
The principles of Science gaining are based on a conviction 

that complex phenomena occurred in Nature, e.g., in electrolytic 
systems, can be explained in terms of some general laws of the matter 
conservation; it is the basic assumption of reductionism. These laws are 
expressed in terms of mathematical equations, valid for the systems of 
any degree of complexity. Reductionism is very similar to and has its 
roots in Ockham’s razor principle that gives precedence to simplicity, 
i.e., the explanation which requires the fewest assumptions. 
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Figure 1: The plots of relationships: (A) E=E(Φ) and (B) pH=pH(Φ) for the system KIO3 (C0=0.01 mol/L) + HCl (Ca=0.02 mol/L) + H2SeO3 (CSe=0.02 mol/L) + HgCl2 
(CHg mol/L) as D titrated with V mL of C=0.1 mol/L ascorbic acid (C6H8O6) as T; curves a are plotted for CHg=0 mol/L, curves b – for CHg=0.07 mol/L in D [17]. 
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The power of reductionism lies in prediction and formulation; it 
is perceived as a good approximation of the macroscopic world. The 
knowledge thus obtained is verifiable and based on logical premises. 
This way, the quantitative knowledge gained from the study of relatively 
simple systems, can be synthesized in the knowledge obtainable from 
more complex systems. From this viewpoint, the knowledge obtained 
from physicochemical analysis involved e.g. with determination of the 
stability constants of complex species formed in a particular system 
can be perceived as a ‘stone’ used in construction of more complex 
systems. Any complex species must be equipped with its equilibrium 
constant value; only a qualitative knowledge (e.g., chemical formula) 
is insufficient in this respect. However, to construct the knowledge 
on more complex systems, these stones should be arranged according 
to a defined scheme (design), based on a set of compatible balances. 
Closely associated with reductionism is determinism the philosophy 
that everything has a cause, and that a particular cause leads to a unique 
effect; it means that under pre-assumed conditions nothing else could 
happen. 

Before 1992, one basic segment needed for construction of the set 
of equations needed for resolution of redox systems was unknown; it 
was the electron balance, named later as GEB. The GEB, discovered 
in 1992, stems from the elements conservation law, and then are fully 
compatible with the equations known previously: the charge balance 
(expressing the law of charge conservation), and concentration 
balances, expressing the conservation of the individual elements 
forming the system. Solution of a set of k+2 nonlinear equations, 
complemented by relations between concentrations of some subsets 
of species, resulting from relations for the corresponding equilibrium 
constants, is not a problem when iterative computer programs are 
used for this purpose. Formally, the manner of resolution of this 
task is even easier than the one based on the formulation of some 
functional dependencies that require some simplifications, as a rule. 
The simplifications are not necessary in iterative methods. Moreover, 
incompetent/non-intended simplifications may lead to the set of 
contradictory equations, impossible to resolution from mathematical 
viewpoint, see [32]. The simplifications made towards obtaining 

specific, functional dependencies between some variables have nothing 
common with the Occam’s razor principle and distort the reality, as a 
rule. Any sophisticated computer program using an “ersatz” (relative 
to GEB) for resolution of electrolytic systems cannot give the results 
desired. 

The combination 2∙f(O)–f(H) of elemental balances for H and 
O (Approach II to GEB) is the quintessence of the electron balance 
that was the missing link needed for description of electrolytic redox 
systems, of any degree of complexity. The Approach II to GEB can 
be perceived as the real expression of Harmonia Mundi, and as the 
powerful testimony of the World Harmony, Harmony of Nature. 
GATES, and GATES/GEB in particular, are clear confirmation of the 
fact that the Nature is designed mathematically and the true laws of 
nature are mathematical, in principle. In other words, the quantitative 
mathematical method became the essence of Science. 

Instead of Epilogue
Thomas Kuhn-the renowned philosopher of science, wrote in 

this book “The Structure of Scientific Revolutions”, published in 1962, 
about an epistemological paradigm, involved with revolutionary shifts 
in science [51]. According to Kuhn, a good paradigm should (1) be 
consistent, both logically and conceptually; (2) be possibly simple and 
contain only those concepts and theories, which are really necessary for 
the science; (3) provide the ability to create a detailed theory, consistent 
with the known facts. 

GATES/GEB is an example of good/excellent paradigm.

The Kuhn’s fundamental argument was that a conventional 
route for the mature science is the revolutionary transition from one 
paradigm to another. When a paradigm is changed, the scientific world 
is changing qualitatively and quantitatively, and the science is enriched 
by quite new facts and theories. Kuhn also argued that-contrary to 
common opinion-typical scientists are not objective and independent 
thinkers, but conservatives, who agree with what they have been taught 
and apply this science (knowledge) to solve problems according to the 
dictates of theory learned by them. 

The man who tries to solve the problem within the existing 
knowledge and technique, directs his thoughts in accordance with 
his learned knowledge. Consequently, researchers tend to ignore and 
fight against the development of a new, competitive paradigm that may 
threaten the existing paradigm.
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