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Commentary Article
Plant has evolved along microbial symbionts, including bacteria, 

archaea, fungi, and protista. These symbionts, i.e. microorganisms 
living in close association with the host, with their collection of intricate 
genetic components have improved plant fitness by adding essential and 
functional capabilities. Therefore, one might continuously see plant as 
a superorganism composed of an amalgam of both selected symbiont 
microbiota and host cells. As single unit, both partners interact closely 
and often operate by complementarity of their metabolic capabilities. 
The nature of these interactions range from mutualism, where 
cooperation between symbionts evolved by enhancing all participants’ 
inclusive fitness, to pathogenesis, where the symbiont increases its own 
growth and fitness selfishly, and trigger the host response leading to 
disease development and ultimately to terminate the interaction. Thus, 
plants have evolved to detect molecular patterns of symbionts and are 
capable to discriminate them by either reinforcement of beneficial 
cooperation [1] or sanctions of detrimental interactions [2]. 

Endophyte is a category of microbial symbionts that interacts 
intimately with the host cells. Endophytes (‘endo’, inside; ‘phyte’, plant) 
are mainly fungi and bacteria that thrive inside the host tissues and are 
detected in all vegetative stages of the host development. They invade 
the host plant from surrounding soil and are under direct influence 
of root exudates. Rice, as other plants, attracts distinct community of 
endophytes by releasing specific compounds into the soil [3]. A rich 
source of ‘readily-available’ (e.g. low molecular weight compounds) 
and recalcitrant nutrients diffuses into the rhizosphere (the soil which 
is directly affected by plant roots), attracting diverse heterotrophic 
microorganisms. Competent heterotrophic microorganisms first 
colonize the rhizoplane (i.e. the epidermal cells of plant roots) and 
later a selected fraction of these organisms may occupy the internal 
root tissues to become endophytic. Hence, most microbial colonization 
traits that are observed in rhizophere are expected to be present in 
the endosphere [4]. Furthermore, microbes equipped with traits 
for efficient nutrient uptake, versatile nutrient metabolism, stress 
resistance and competitive fitness might be at an advantage to become 
endophytic. The rhizodeposition as mechanism of plant selection 
is poorly understood and further research is needed to clarify which 
molecules are discriminated by each microbe among the rich source 
of photo-assimilated compounds released by the host. Once inside 
the roots, endophytes might migrate to aerial tissues, including seeds 
[5,6]. Indeed, vertical transmission via seeds is another important 
mechanism for the establishment of endophytes. Various endophytes 
have been observed in rice seedlings growing aseptically [7-12] and it 
has been estimated that almost half of the early bacterial community 
from rice seedlings is originated from vertical transmission [9]. Thus, 
one might not exclude the selection of specific microbial communities 
to perpetuate mutualistic symbiosis [13]. The importance of vertical 
transmission becomes even more evident when beneficial endophytes 
improve host fitness upon adverse environmental conditions [14] or 
under conditions without induced stress [15].

A complete understanding of the community composition and 

their putative functions inside the plant are necessary to foster the 
efficient use of endophytes as plant growth promoters. Many surveys 
of the prokaryotic community inside rice plants have been reported. 
For instance, culture-dependent and -independent surveys of the 
rice roots cv. APO identified an astonishing diversity of prokaryotic 
endophytes that were encompassed by 16 phyla/classes [16]. In 
both approaches, members of Gammaproteobacteria were the 
most abundant class, followed by Alphaproteobacteria. Members 
of Epsilon- and Delta-proteobacteria, Bacteroidetes, Fibrobacteres, 
Planctomycetes, Nitrospirae, Tenericutes, Clostridia, Negativicutes, 
candidatus division TM7, Cyanobacteria and Crenarchaeota were 
exclusively identified in the clones, whereas Actinobacteria were only 
found as isolates. Although diverse, the prokaryotic community was 
largely dominated (i.e. one third of the sequences) by members of the 
recently described genus Kosakonia [17]. The investigated Kosakonia 
strains revealed various in vitro plant growth-promoting properties 
such as production of siderophores, indole-3-acetic acid (IAA), 
acetoin and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, 
solubilisation of inorganic phosphate, reduction of nitrate, and fixation 
of atmospheric N2 as well as plant adaptation properties such as catalase 
production, oxidation of methanol, and production of extracellular 
cellulase, amylase and protease [17]. 

The first functional metagenome analysis from rice roots was carried 
out using the same cultivar described above. The results collected from 
the non-PCR-amplified DNA fragments also revealed high diversity of 
prokaryotic endophytes [18]. The identified genes encoding proteins 
suggest that the endophytic bacteria have special properties to live 
inside the host tissues, which often includes osmotic protection and 
resistance to oxidative stresses, production of hydrolytic enzymes and 
outer-membrane proteins involved in host recognition and adhesion, 
dedicated communication systems via autoinducer molecules, diverse 
transcriptional regulators to rapidly respond to host cues, metabolic 
adaptation to cope in oxic and anoxic niches, and degradation of 
aliphatic, aromatic and carbon storage compounds as well as ecological 
and nutritional versatility to use plant metabolites as carbon sources. 
In addition, many of the plant growth promotion properties described 
earlier and even more were detected in the rice metagenome [18]. The 
authors also showed that almost all enzymes involved in the N-cycle are 
represented in the endophyte metagenome. Genes encoding proteins 
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for nitrification (occurring in aerobic condition), denitrification 
(anaerobic), and nitrogen fixation (semi-anaerobic) were detected in 
high abundance. Moreover, the nifH gene involved in nitrogen fixation 
was actively transcribed inside rice roots, suggesting that some bacterial 
species might contribute to the overall nitrogen pool inside the host 
[18-20]. This is an energetically highly demanding process, which only 
occurs when certain conditions are met. Under flood conditions and 
in the presence of reliable nutrient sources, qualified bacteria might 
actively incorporate atmospheric N2 into the rice host metabolism, like 
rhizobia do inside leguminous plants.

Rice plants inoculated with endophytic bacteria show significant 
improvement in plant growth and grain yields. Vigorous seedling 
development is important for plant establishment and grain production 
and inoculation of rice seeds with endophytic bacteria Herbaspirillum 
seropedicae, Sinorhizobium meliloti, Achromobacter xylosoxidans, 
Pseusomonas spp., Sphingomonas trueperi, and Serratia marcescens 
promotes seedlings’ growth [21-26]. Nitrogen, one of the most limiting 
nutrients for rice cultivation, is also significantly increased inside rice 
plants inoculated with diazotrophic endophyte strains Herbaspirillum 
seropedicae, Burkholderia spp., Rhizobium sp. and Corynebacterium sp. 
as well as fungal endophytes Phomopsis liquidambari [22,25,27-29]. 
Increased in grain yields have been reported for rice plants inoculated 
with endophytes Rhizobium leguminosarum bv. trifolii, Rhizobium sp. 
IRBG74, Burkholderia cepacia/vietnamiensis complex, Pseudomonas 
sp., Herbaspirillum seropedicae, Gluconacetobacter diazotrophicus, 
Azospirillum brasilense, and Pantoea agglomerans strains [30-33]. 
Endophytes can also improve plant growth via biocontrol mechanisms. 
Those with excellent antagonistic properties against plant pathogens 
might be used to reduce pathogen growth. Rice endophytic bacteria 
Acidovorax sp. S20, Acinetobacter baylyi, Acinetobacter calcoaceticus, 
Acinetobacter junii, Acinetobacter sp. B, Actinomycetes spp., 
Agrobacterium larrymoorei, Agrobacterium radiobacter, Arthrobacter 
citreus, Bacillus amyloliquefaciens, Bacillus cereus, Bacillus megaterium, 
Bacillus mycoides, Bacillus polyfermenticus, Bacillus pumilus, Bacillus 
simplex, Bacillus sp. WL-3, Bacillus sphaericus, Bacillus subtilis, 
Brevibacillus brevis, Brevibacterium epidermidis, Burkholderia cepacia, 
Burkholderia gladioli, Burkholderia glumae, Burkholderia kururiensis, 
Burkholderia sp. KJ006, Curtobacterium flaccumfaciens, Deinococcus 
aquaticus, Enterobacter cloacae, Gluconacetobacter diazotrophicus, 
Klebsiella mobilis, Microbacterium esteroaromaticum, Micrococcus 
lylae, Paenibacillus cineris, Paenibacillus favisporus, Paenibacillus 
lentimorbus, Pantoea agglomerans, Pantoea ananatis, Pantoea dispersa, 
Pantoea stewartii, Pseudomonas aeruginosa, Pseudomonas entomophila, 
Pseudomonas fluorescens, Pseudomonas oryzihabitans, Pseudomonas 
putida, Pseudomonas sp. PALXIL12, Pseudomonas stutzeri, 
Sphingomonas capsulate, Staphylococcus arlettae, Staphylococcus 
simulans, Stenotrophomonas maltophi, and Xanthomonas sp. LMG 
20137 and fungi Fusarium moniliforme, Trichoderma, Harpophora 
oryzae, Phialemonium curvatum, Phaeosphaeriopsis musae have been 
recommended for their biocontrol potential [7,34-43].

Until recently, microbial community detected inside the host 
plants has been associated with diseases development. We learned 
from human microbiome the importance of high diversity community 
to maintain the health and functioning stability. As in human 
microbiome, plant disease outbreaks are often associated with shifts of 
the whole microbial community originated from the imbalance growth 
of specific symbiont community. The symbionts mentioned above 
exemplify the importance of endophytes for the host fitness and grain 
production. It also demonstrates that host genome and its symbiont 
microbiome are intimately interconnected creating the rice holobiome, 

the genome content of this superorganism. As the study of Gregor 
Johann Mendel on genetic inheritance in garden peas revolutionized 
biology by introducing the laws of inheritance, the concept of plant 
holobiome will allow us to understand even further the factors affecting 
plant production. Sustainable and responsible agricultural production 
will be guided by our knowledge on how plant holobiome operates.
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