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Abstract

Helicobacter pylori infection induces gastric inflammation, ulcer, and cancer. H. pylori infection is coordinated in a
cascade manner that helps it to colonize in the host. Colonization of bacterium starts by adapting itself to the harsh
acidic environment in the stomach. H. pylori has the necessary machinery to neutralise the pH of its surroundings. It
also has the ability to sense the pH of its surroundings and move towards the less acidic region. H. pylori’s next
hurdle is gastric mucosal barrier in the stomach and it has the capability to overcome this gastric mucosal barrier.
Once the gastric mucosal barrier is weakened, pathogen uses different adhesion molecules to adhere to the
epithelial lining of the stomach. Pathogen then establishes interaction with the host using several toxins that
indirectly leads to development of inflammation or gastritis. Prolonged inflammation damages epithelial cells leading
to ulcers in the stomach. Genetic changes in the host cell due to H. pylori infection leads to development of gastric
cancer. The present paper reviews in detail H. pylori induced gastritis, gastric ulcers and gastric cancer.
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Introduction
Helicobacter pylori (previously known as Campylobacter pylori) is

about 3 µm long and 0.5 µm in diameter, microaerophilic (requires
oxygen), neutralophilic (adapting to highly acidic environment) helix-
shaped (curved rod), gram negative bacteria colonizing upper
gastrointestinal tract. Conservative thinking was that no bacterium can
live in the human stomach as its pH is acidic in nature (~1). Research
to identify spiral shaped bacteria in the lining of human stomach was
initiated by a group of German scientists in 1875 [1]. Akin Bizzozero
[2] detected similar bacteria in the stomach of dogs. Professor Walery
Jaworski in 1899 investigated and proposed the possibility of being an
organism involved in gastric diseases [3]. Several studies conducted
over a period of time concluded that microbes or stress or spicy food
are responsible for ulcers and gastric diseases. Warren and Marshall
[4] identified, visualized, and cultured H. pylori in in vitro conditions
and declared that stomach ulcers and gastritis are mostly due to H.
pylori, and not due to stress and spicy food. Dr. Barry Marshall
administered himself H. pylori culture through an oral route to
demonstrate the connection between gastritis and H. pylori. After 10
days, Dr. Barry Marshall revealed the signs of gastritis by endoscopy
suggesting that H. pylori is the causative agent of gastritis. Warren and
Marshall [4] also suggested that antibiotics can be employed for
effective treatment of gastritis, for which they were awarded Noble
Prize in Medicine or Physiology in the year 2005. Blaser [1]
hypothesized that colonization of H. pylori in stomach is beneficial
though its connection with gastritis was well established [5]. Blaser [1]
also proposed it to be ‘a member of the normal flora of the stomach’.
Colonization of H. pylori in stomach influences systemic immune
responses and reduces acid reflux disease [1], asthma [6], dermatitis

[6], esophageal cancer [1,6,7], gastroesophageal reflux disease [1,7],
inflammatory bowel disease [6], obesity [8,9], rhinitis [6] and type II
diabetis [8,9]. Chen and Blaser [10] asserted Blaser’s hypothesis that H.
pylori is a member of the normal flora of the stomach’ by
demonstrating the association between H. pylori colonization and
lower incidence of childhood asthma. Whatever may be the
consequences of colonization of H. pylori in stomach a positive effect
by reducing diseases or undesirable effect by causing gastritis;
association between H. pylori and host is essential.

Association between H. pylori and its human host was estimated to
be around 60,000 years ago [11]. Simulations based on the genetic
diversity data established the fact that association between H. pylori
and its human host was first established in the birth place of modern
human in Africa. H. pylori then diverged along with modern human
from the birth place.

S.
No Country Rank % of rate of incidence Year Reference

1 Republic of Korea 1 41.8 2012 [17]

2 Mongolia 2 32.5 2012 [17]

3 Japan 3 29.9 2012 [17]

4 Guatemala 4 23.7 2012 [17]

5 China 5 22.7 2012 [17]

6 Tajikistan 6 21.7 2012 [17]

7 Kazakhstan 7 21.6 2012 [17]

8 Kyrgyzstan 8 21.4 2012 [17]

9 Albania 9 20.1 2012 [17]
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10 Belarus 10 18.8 2012 [17]

11 Turkmenistan 11 18.2 2012 [17]

12 Costa Rica 12 17.3 2012 [17]

13 Bhutan 13 17.2 2012 [17]

14 Honduras 14 17 2012 [17]

15 Ecuador 15 16.9 2012 [17]

16 FYR Macedonia 16 16.5 2012 [17]

17 El Salvador 17 16.4 2012 [17]

18 Viet Nam 18 16.3 2012 [17]

19 Russian
Federation 19 16 2012 [17]

20 Peru 20 15.8 2012 [17]

Table 1: International statistics on gastric cancer

Phylogenetic analysis established the following lineages of H. pylori
that diverged during the course of evolution–Africa 1 (includes
isolates from West and South Africa), Africa 2 (includes isolates from
South Africa), NE Africa (includes isolates from North East Africa),

Amerind (includes isolates from Native Americans), Asia 2 (includes
isolates from Bangladesh, Malayasia, North India and Thailand), East
Asia (includes isolates from East Asians), Europe (includes isolates
from Europe, Middle East, India), Maori (includes isolates from
Taiwanese Aboriginals, Melanesians and Polnesians), and Sahul
(includes isolates from Australian Aboriginals, and Papua New
Guineans). Ancestors for the above lineages are ancestral East Asia,
ancestral Africa 1, ancestral Africa 2, ancestral Europe 1, ancestral
Europe 2 and ancestral Sahul [12].

Diversity among the H. pylori isolates established the fact that
world’s human population is infected with H. pylori and is the most
widespread infection in the world. Living standards of the country, age
of the host infected with H. pylori can be the factors that influence the
possible outcome of the infection. Infection rate is high in
underdeveloped countries followed by developing countries and
developed countries [13]. Socioeconomic factors, hygiene standards,
and wide spread of antibiotics can be attributed to the differences in
the infection rates in different countries [14,15]. Age at which host is
infected with the bacterium also influences outcome of the infection.
High risk of gastric ulcer and cancer was the observed in individuals
who were infected at an early age than individuals who were infected
at a later age [16-18]. The age standardised rate of gastric cancers in all
the countries (Tables 1 and 2) explains the above trends on age.
Statistics revealed that gastric cancer is the second most common
cancer worldwide.

S. No Name of the place Rank in Male AAR in Male Rank in
Female

AAR in Female Year Reference

1 Chennai 1 13.6 3 6.5 1990-96 [18]

2 Bangalore 1 9.5 6 5.1 1990-96 [18]

3 Mumbai 5 6.4 7 3.2 1990-96 [18]

4 Bhopal 9 3.9 9 2.5 1990-96 [18]

5 Delhi 10 3.4 12 1.8 1990-96 [18]

6 Barshi 15 1.2 6 0.8 1990-96 [18]

Table 2: Gastric cancer statistics in India

H. pylori is tested if peptic ulcers disease, MALT lymphoma,
dyspepsia were reported [19]. Several methods that are in use to test
the existence or association of H. pylori with gastrointestinal disorders
are endoscopy, biopsy, histological examination and microbial
culturing [19]. If, H. pylori is cultured, they can be visualized by Gram
stain, acridine-orange stain, Giemsa stain, haematoxylin–eosin stain,
and Warthin-Starry silver stain. H. pylori can also be visualized using
phase-contrast microscope. The other tests that are used are rapid
urease, ELISA, blood antibody, and stool antigen tests [20]. Proton
pumps, H2 antagonists, and antacids were initially used in treatment
against H. pylori [21,22]. Standard first line therapy to treat H. pylori
consists of triple therapy proton pump inhibitor omeprazole,
antibiotic clarithromycin and amoxicillin. Alternative proton pump
inhibitors are pantoprozole and rabeprozole; and alternate antibiotic
for clarithromycin is levofloxacin and for antibiotic amoxicillin is
metronidazole [23-25]. When initial therapy failed due to antibiotic
resistance, alternative strategy such as quadruple therapy is
implemented in the form bismuth colloid which includes bismuth
subsalicylate [26,27]. Rising antibiotic resistance has driven the

research to identify new drug targets [28,29] and drugs [29].
Alternative therapeutic strategy such as ‘routes of immunization’ to
provide immune protection in the form of vaccination to control H.
pylori is also in trial [30]. New vaccines or drugs can be developed if
we can better understand the pathogenesis of H. pylori at different
stages such as adaptation of H. pylori to the acidic environment in the
stomach, protection from oxidative stress induced by host, adhesion of
the pathogen to the stomach, gastritis, ulcer, and gastric cancer. 

Pathogenesis of the Helicobacter pylori
H. pylori is linked gastric carcinoma, gastric adenocarcinoma,

gastric ulcer, gastritis and MALT lymphoma. H. pylori is contagious,
where the person-to-person transmission is either by the feacal–oral or
oral-oral route. H. pylori infection and pathogenicity is well connected
and coordinated by different mechanisms to adapt to the acidic
environment in the stomach; to attack the stomach wall by weakening
the gastric mucosal barrier; using different molecules to adhere the
host stomach lining; protecting itself from oxidative stress; inducing
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gastritis or inflammation, formation of ulcers, and inducing gastric
cancer.

Mechanisms of adaptation to the acidic environment in the
stomach

The neutralophilic motile bacterium H. pylori has developed several
strategies to minimize its exposure to low pH so that it can flourish
well in the gastric environment of the host. H. pylori migrates from
anum to fundus to colonize in the host. The pH in the stomach varies
widely, in the absence of food (pH is~1.0) and in the presence of food
(pH is~5.0).

H. pylori has the adeptness to sense chemicals in the surrounding
environment, and pH is an important cue (Figure 1). Bacteria
recognize and act in response to these chemical signals using
chemoreceptors. Four chemoreceptors TlpA, TlpB, TlpC, and TlpD
and several polar flagella are reported in H. pylori. Chemoreceptors
allow the bacteria to swim in case of attractant and stop in case of
repellent [31,32]. Sweeney et al., [33] established the structure of
chemoreceptor TlpB’s and proposed the mechanism by which H.
pylori sense pH. TlpB is a member of MCP superfamily of
transmembrane receptors, containing two transmembrane helices with
an extracellular sensing Per-ARNT-Sim (PAS) domain popularly
known as universal signalling fold. Active site of this domain contains
a molecule of urea. This domain along with urea is responsible for
detecting ligands directly or indirectly via interactions with
periplasmic proteins. Transmembrane helices on the cytoplasmic side
are helical with a histidine kinase adenyl cyclase, methyl binding
protein, phosphatase (HAMP) domain. Followed by a helical domain,
that binds to the segment CheA/CheW histidine autokinase complex.
At neutral pH, Asp114 in the active site is negatively charged and
accepts two hydrogen bonds from the amide nitrogen atoms of
cofactor urea, thereby binding and stabilising the fold of PAS domain.
The state of the periplasmic domain is relayed through the
transmembrane region affecting the phosphorylation of CheA, inturn
controlling the downstream components of flagellar motor and its
activity to guide stopping behaviour. Whereas, in the case of high pH
Asp114 in the active site is highly protonated by weakening or
disrupting binding of cofactor urea. Signal is relayed and guides
flagellar motor to moving behaviour.

Once the pH is sensed by the chemoreceptors, H. pylori has two
mechanisms to adapt to the acidic environment. The first mechanism
of H. pylori is to change the pH of its surroundings and the second
mechanism is to move towards the less acidic region. The pH of its
surrounding environment is changed by urease and is coded by urease
gene cluster ure A, B, I, E, F, G, and H [34]. Urease structural subunits
are coded by ure A and B; followed by assemble of inactive urease
structural subunits into active urease by incorporating nickel using ure
E, F, G, and H [35]. Whereas, ure I encodes a pH gated urea channel to
increase the access of urea to intrabacterial urease in low pH
conditions [36]. Intrabacterial urease activity generates carbon dioxide
and ammonia buffering the cytoplasm and periplasm of the organism
[37]. Urease deletion mutants were not able colonize the stomach and
failed to survive in the acidic environment [38]. Followed by activation
of mechanisms to sense and change the pH of its surroundings, H.
pylori tends to move towards the less acidic region.

Stomach lining composes of mucous layer, followed by epithelial
cells and connective tissue respectively. Mucous layer is towards the
lumen interface and epithelial cells and connective tissue are
underneath the mucous layer. pH at the mucous lumen interface and

at the mucous epithelial cells is ~2 and ~5 to 6 respectively. So, H.
pylori uses its flagella to tunnel into the mucous and move towards the
less acidic region. Thus, bacterium is able to move from the acidic pH
at mucous lumen interface to the neutral pH at the mucous epithelial
cells interface. It can be concluded that H. pylori is migrating from the
stomach lumen via mucous layer to the epithelial cells to colonize as
the pH of the epithelial cells is neutral.

Attacking the stomach wall–gastric mucosal barrier

Colonization of H. pylori is different in different individuals. Based
on the acidity of the stomach bacterium can colonize mucous, or
epithelium inner surface, or inside the epithelial cells or at pyloric
antrum or at fundus or whole lining of the stomach or rest of the
stomach. Colonization along the whole lining of the stomach, or at
pyloric antrum, or at fundus can be due to normal or reduced amounts
of acid secretion; large amounts of acid secretion; and to avoid acid
secreting parietal acids respectively. Colonization of H. pylori along
the lining of stomach or in the mucous or epithelial cells is possible
only when gastric mucosal barrier is weakened. Gastric mucosal
barrier protects gastric mucosa from a variety of damaging agent’s
such as gastric acid, pepsin, refluxed bile and pancreatic juice, certain
foods, range of temperatures, hyperosmolar and abrasive substances,
bacterial toxins and damaging drugs. Gastric mucosal barrier is
collection of anatomical, physical and chemical processes that protect
the gastric mucosa. The eight components of the gastric mucosal
barrier are (1) tight junctions of the epithelial cells (2) restitution a
process which gastric epithelial cells change shape (3) secretion of
mucosal bicarbonate (HCO3-) (4) hydrophobic nature of the apical
membrane of the gastric epithelial cells (5) balance of local acid-base
and gastric mucous blood flow (6) production and secretion of gastric
mucosa (7) regulation and protective effect of mucosal prostaglandins
and (8) basal lam. Though the role of H. pylori in damaging gastric
mucosal barrier is not yet known, there might be some unknown
mechanism contributing to weakening of gastric mucosal barrier that
helps in colonizing bacterium in the mucous [39]. H. pylori may
mediate the weakening of gastric mucosal barrier via toxin VacA,
cytokines, gastrin release probably by loosening the protective mucous
layer, disruption of mucous layer, and alterations in mucous
glycoproteins respectively.

Adhesion of the pathogen to the stomach

H. pylori adheres to the epithelial cells with the help of adhesins
such as BabA and SabA. Adhesins bind to carbohydrates and lipids of
epithelial cell membrane [40]. BabA and SabA binds to Lewis b
antigen and sialyl-Lewis X antigen expressed on epithelial cells and
gastric mucosa respectively [41,42]. In addition to these proteins
adherence is assisted by a group of proteins such as AlpA, AlpB,
HopZ, and OipA [43]. Gastritis, ulcer formation and gastric cancer are
three events which run parallel (Figure 1).

Inflammation or gastritis induced by H. pylori

Several mechanisms are proposed to describe the pathogenicity of
H. pylori: change in expression of host genes, infection-induced cell
proliferation, loss of polarity and elongation of cell, cell-cell junctions
degradation, decrease in acid secretion [44] and inflammation.
Cytotoxin associated gene pathogenicity island (cag PAI) with a size of
40 Kbp contains 27 genes encoding for T4SS pilus which is responsible
for pathogenicity and inflammation. Cag PAI encodes for genes CagA,
VacA, 11VirB proteins (VirB1- VirB11) and coupling protein (VirD4).
Core components or putative channel is formed by Vir B6-B10; pilus
associated components is formed by VirB2, VirB3, and VirB5; VirB4
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and VirB11 are the energetic components; VirB1 is a muraminidase
enzyme which lyse murien at a particular location to establish T4SS
pilus assembly. CagY (VirB5 orthologue), Cag I, L, Y, and VirB
proteins form the appendage of pilus to secrete CagA, VacA and
peptidoglycan into the host [45].

CagA when injected into the host epithelial cells, it is
phosphorylated and activated by src kinase and host proteins to
modify cellular responses [46]. Cell focal adhesions are disrupted by
CagA by binding and activating SHP2 phosphates [46]. Normal
epithelial architecture is disrupted when polarity regulator PAR1b/
MARK2 kinase is inhibited by CagA leading to loss of polarity in
epithelial cells [46]. Another surface receptor protein in H. pylori Toll
like receptor (TLR)-2 disrupts adherin junctions within gastric
epithelial cells. TLR-2 activates protease calpain cleaving E-cadherin
and allows increased β-catenin signalling to disrupt adherin junctions
[47].

H. pylori infection leads to inflammation at the site of infection by
inducing proinflammatory cytokines. Peptidoglycan of pathogen
enters the host cell and stimulates intracelluar pathogen receptor
Nod1, to signal and activate NF-κβ and AP-1 to induce cytokines such
as interleukins. Interleukins (IL)-1, IL-6, IL-8, TNF-α, and RANTES
are the inflammatory molecules upregulated in the host stomach.
Apart from cytokines, chemokines like granulocyte-macrophage
colony stimulating factor (GM-CSF), cyclooxygenases (COX-2),
Reactive Oxygen/Nitrogen Species (RONS), H. pylori neutrophil
activating protein (HP-NAP) are stimulated and activated during
inflammation. Beales and Calam [48] found that infection of H. pylori
stimulates GM-CSF when tested on human gastric epithelial cell lines.
H. pylori infection also leads to activation of AP-1 to induce COX-2
and nitric acid synthase [49]. COX-2 induces prostaglandin synthesis
(PGE)–2 [49]. H. pylori nitric acid synthase [49], LPS [50], arginases
and host arginase II [51] produce, upregulate, and modulate nitric
oxide species respectively. Vacuolating cytotoxin (Vac) A [52] and
HP-NAP [53] induce ROS production at the site of infection. Huang et
al., [52] demonstrated that Vac A induces ROS damage in
mitochondrial DNA of gastric epithelial cells. Vac A interact with a
number of host surface receptors to trigger responses such as pore
formation, cell vacuolation, endolysomal functions modification,
immune inhibition and apoptosis [54-56]. HP-NAP is secreted and
passes through the epithelial cell to reach lamina propia to induce ROS
from neutrophils and monocytes and also to stimulate production of
other chemokines such as CXCL8, CCL3, and CCL4 to attract or
recruit other leucocytes [52,57,58]. Virulence factors such as γ-
glutamyl transpeptidase, VacA and cholesterol α-glucosides
modulated responses of T cells.

Protection from oxidative stress

Pathogenesis of H. pylori is dependent on its ability to survive in the
vulnerable oxidative stress environment apart from other factors such
as acidity, peristalsis and phagocytsis [59]. Oxidative stress induced by
H. pylori when it colonizes host is lethal leading to DNA damage in
the genome of H. pylori [60]. Many pathogens including H. pylori
have acquired the ability to survive DNA damage induced by oxidative
stress by transformation mediated recombination DNA repair for
successful infection of the pathogen [61]. While many pathogens are
competent for transformation only in certain environmental
conditions such as starvation, H. pylori is competent throughout the
growth [62]. H. pylori is exposed to double stranded DNA damage and
natural transformation has increased with DNA damage [62]. Mutants
of RecA, Rec N, RuvC, and AddAB were unable to colonize the human

host with increased sensitivity to DNA damaging agents and oxidative
stress [62-64].

Formation of ulcers

When bacteria colonize the stomach, inflammation induces G cells
of the antrum. G cells secrete hormone gastrin, which travels to
parietal cells of the fundus via blood stream [5]. Gastrin stimulates
secretion of the acid from the parietal cells and also increases the
number of parietal cells. Increased load of acid damages epithelial cells
of the duodenum resulting in ulcers [65].

Gastric cancer

Inflammatory cells produce cytokines such as metalloproteinases
(MMPs), prostaglandin E2 (PGE2) and RONS, which in turn augment
and prolong the inflammatory cascade (cytokines induce PGE2 and
MMPs induce RONS). These inflammatory mediators disregulate
DNA repair enzymes thereby leading to microsatellite instability
(MSI). Inflammatory mediators also lead to defective mitotic
checkpoints, induce directly or indirectly double stranded breaks
(DSB) and deregulate HR pathway of DSB repair leading to
chromosomal instability (CI). MSI and CI induce genetic
diversification randomly leading to activation of oncogenes and
inactivating tumor suppressor genes [66] (Figure 1).

LPS, peptidoglycan, and CagA of H. pylori activate transcription
factor NF-κβ which is essential to activate innate and adaptive
immune responses against pathogens. Sustained and constitutive
expression of NF-κβ results in chronic inflammation and cancer [67].
NF-κβ signalling needs to be turned off properly to avoid prolonged
and detrimental inflammatory responses. Cell utilizes many
mechanisms at multiple levels for termination of NF-κβ signalling.
1kβα synthesis and cyclandromatosis (CYLD) expression mechanisms
are lost or overpowered in cancer by downregulation of NF-κβ
signalling. Other mechanism by which NF-κβ is turned off is by direct
ubiquitination and degradation of NF-κβ [68]. CagA and COX-2 were
known for cell proliferation, prostaglandin biosynthesis and
angiogenesis. Cag A binds to E-cadherin interferring β-catenin
regulation, transdifferentiation of numerous cell lineages and
increased cell proliferation [69]. Mitogen inducible cyclogenases-2
(COX-2) was reported to induce prostaglandin biosynthesis and
angiogenesis in human gastric cancer tissues. COX-2 overexpression
also correlated with metastatic involvement of the lymph nodes [70].
COX-2 expression correlated with microvessel density. VacA induced
Reactive Oxygen Species (ROS) damage in mitochondrial DNA of
gastric epithelial cells is studied by Huang et al., [53].

Though the information on activation of oncogenes is not well
studied, several papers reported on inactivation of tumor suppressor
genes after the H. pylori infection. Inactivation of the tumor
suppressor genes-RUNX3, p53, ASPP2, TFF1, TFF2, TFF3, GKN1 and
GKN2 promoted gastric carcinogenesis. Cag A induces proteasome-
mediated degradation that inactivates gastric tumor suppressor gene
RUNX3 [71,72]. Hypermethylation of promoter of RUNX3 also leads
to gene silencing [71,73]. Cag A also induces proteasome-mediated
degradation of p53 to modulate and ASPP2 tumor suppressor genes
[74].
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Figure 1: Schematic representation of Helicobacter pylori infection
induced gastric inflammation, ulcer, and cancer.

Trefoil factor family proteins (TFF1,2,3) regulate mucosal repair
and suppresses tumor formation in stomach. Deficiency of tumor
suppressor genes TFF1 and genetic ablation of gene TFF2 revealed the
protective role of TIFF proteins and their reduction in promoting
gastric carcinogenesis. Another protein belonging to gastrokine family
GKN1 and GKN2 also have a protective role in gastric mucosa and
downregulated in gastric cancer [75,76].

H. pylori induced Apoptosis

VacA toxin of H. pylori, MHC-II, Fas-FasL, transcription regulator
NF-κβ of host were known for probably inducing apoptosis. H. pylori
infection mediates insertion of VacA toxin into the mitochondrial
membrane to induce and release cytochrome-C thereby activating
Caspase 3 dependent cell-death signalling cascade which in turn
activates mechanism of apoptosis [77-79]. Pathogen H. pylori binds or
interacts to/with MHC-II on the surface of gastric epithelial cells to
induce apoptosis [80]. H. pylori induce expression of Fas (cell-surface
receptor) and FasL (Fas Ligand) and stimulate apoptosis [81]. Gastric
epithelial cells respond to H. pylori by activating NF-κβ regulating
inflammatory cascade (chemokines, iNOS) leading to apoptosis [82].

Concluding Remarks
Helicobacter pylori infection induces gastric inflammation, ulcer,

and cancer. Bacterium colonizes in the acidic environment of the
stomach. Chemoreceptor TlpB, in H. pylori senses pH and tends to
move towards the less acidic region. The other mechanism that H.
pylori uses is production of urease to neutralize its periplasm and
cytoplasm. H. pylori then adhere to the epithelial cells with the help of
adhesins such as BabA, SabA, AlpA, AlpB, HopZ, and OipA. Pathogen
with help of toxin VacA , cytokines, gastrin then weakens the gastric
mucosal barrier by loosening the mucous layer or disruption of
mucous layer or by altering mucous glycoproteins to colonize in the
mucous or submucous or epithelial cells. Cytotoxin associated gene
pathogenicity island (cag PAI) codes for T4SS system that injects
CagA, VacA and peptidoglycan into the host cell. Injection of CagA
changes the expression of host genes, induces cell proliferation, loss of
polarity and elongation of cell, degradation of cell-cell junctions,
decrease in acid secretion and inflammation. Inflammatory cells
produce cytokines such as MMPs, PGE2 and RONS, which in turn
augment and prolong the inflammatory cascade. H. pylori is
vulnerable to oxidative stress, acidity, peristalsis and phagocytes lethal
leading to DNA damage in the genome. H. pylori uses the acquired
transformation mediated recombination DNA repair for successful
infection of the pathogen. Prolonged inflammation leads to ulcers by
inducing G cells to secrete hormone gastrin, which in turn stimulates
loads of acid damaging duodenum. Inflammatory mediators, NF-κβ,
β-catenin signalling pathways induce indirectly or directly DSB,
defective mitotic checkpoints, deregulating HR pathway of DSB repair
and DNA repair enzymes leading to MSI and CI. MSI and CI induce
genetic diversification randomly leading to activation of oncogenes
and inactivation of tumor suppressor genes RUNX3, p53, ASPP2,
TFF1, TFF2, TFF3, GK1 and GKN2.
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