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Abstract

Background: Despite significant advancements in the diagnosis and treatment of Gastric Cancer (GC), it 
remains a major contributor to global cancer-related mortality, characterized by high rates of distant recurrence and 
late-stage fatality.

Methods: We obtained gene expression data for the GC cohort (TCGA-STAD) from the Genomic Data Public 
Portal (GDC) and lysosome-related genomic data from AMIGO. We used the GSE66259 dataset from the Gene 
Expression Omnibus (GEO) database for external validation. Initially, we screened GC tissues for Differentially 
Expressed Genes (DEGs) compared to normal tissues and overlapped DEGs with lysosomal genes to obtain 
Lysosome-Related Genes (LRGs). Key LRGs were then selected for prognostic modeling through univariate Cox 
regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and multivariate Cox stepwise 
regression. The prognostic models were evaluated using Kaplan-Meyer (K-M) analysis and Receiver Operating 
Characteristic (ROC) curves. Independent prognostic factors were also identified by univariate Cox regression and 
multivariate Cox regression analyses. Additionally, we investigated biological functions, response to Immune 
Checkpoint Inhibitors (ICIs), as well as Tumor Mutational Load (TMB) mutations in high and low-risk groups.

Results: The univariate Cox analysis identified a total of 48 lysosomal genes with significant differential 
expression. Subsequently, LASSO regression was employed to select 11 prognostic genes. Finally, a multivariate 
Cox stepwise regression yielded a set of 7 genes (TRIM29, EGF, GPC3, RETN, RNASE3, GRP, and PSAL1) for 
constructing the prognostic models. The validated risk model demonstrated accurate prediction of clinical outcomes. 
Furthermore, independent prognostic analyses revealed that the risk score along with stage and age were 
independent prognostic factors. Notably, significant differences in biological function, immune microenvironment 
characteristics, as well as immunotherapy response, were observed between the high and low-risk groups.

Conclusions: The identification of 7 key prognostic LRGs associated with GC patients facilitates accurate 
prognosis prediction and presents a novel avenue for enhancing clinical management and prognostic outcomes in 
the GC patient population.
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Introduction
Gastric Cancer (GC) ranks as the fifth most prevalent malignancy 

worldwide and stands as the third leading cause of cancer-related 
mortality [1]. The incidence of GC remains alarmingly high, 
accompanied by a dismal prognosis. As per global statistics in 2020, 
over a million new cases of GC were reported, with approximately 
769,000 patients succumbing to this disease [2,3]. Despite notable 
advancements in screening and treatment modalities for GC, its fatality 
rates and distant recurrence remain elevated, and the median Overall 
Survival (OS) for individuals with advanced GC merely reaches 14.2 
months [4,5]. Consequently, it becomes imperative to identify more 
precise and effective cellular molecular markers that can enhance 
patient outcomes while alleviating their burden.
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Lysosomes, membrane-enclosed organelles, play a crucial role in
intracellular macromolecule degradation, leading to their previous
designation as "rubbish disposals" [6-9]. Further investigations have
revealed that lysosomes also serve essential functions in cellular
adaptation to various signaling stimuli and act as pivotal signaling
hubs for nutrient responses and signal transduction [10].
Dysregulation of pH and dysfunction within lysosomes have been
associated with human longevity, cellular senescence, Parkinson's
disease, and Alzheimer's disease [11,12]. Additionally, lysosomes
modulate the proliferation of tumor cells through growth factor
signaling regulation, hence malignant cell phenotypes in certain
tumor-related diseases are linked to altered lysosomal activity [13].
Notably, researchers have proposed utilizing Lysosome-Dependent
Cell Death (LDCD) as a potential strategy for eliminating cancer cells
due to observed alterations in the lysosomal structure in some cancers.
Furthermore, lysosomes play a critical role in the development of
resistance to radiation and chemotherapy in tumor cells [14].
Unfortunately, there is a dearth of existing literature specifically
investigating the correlation between GC cells and Lysosome-Related
Genes (LRGs).

The primary objective of this study is to analyze the expression
patterns of LRGs in GC cells and establish a prognostic model for
LRGs. Additionally, we also investigate the correlation between the
prognostic model and immune response as well as mutational status,
thereby exploring the feasibility of our proposed model. Overall, the
prognostic LRGs model developed in this research can effectively
predict the prognosis of GC patients and contribute to relevant clinical
treatment strategies. The analytical workflow employed in this study is
illustrated in Figure 1.

Figure 1: The workflow of the current study.

Materials and Methods

Database of GC patients
The gene expression data of GC and normal samples, as well as the 

clinical information data (TCGA-STAD), were obtained from the 
TCGA database (https://portal.gdc.cancer.gov/). The TCGA-STAD 
dataset comprised 410 GC tissues and 36 normal tissues. Additionally,

the gene expression data of the GSE66259 gastric cancer cell dataset 
was acquired from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/), which included 300 GC tissues and 100 normal tissues. The 
clinical information data for the GSE66259 dataset was retrieved from 
the literature [15-16]. A total of 875 LRGs were obtained from 
AmiGO2 (http://amigo.geneontology.org/amigo) and analyzed using R 
4.2.2 software.

Identification of differential prognostic LRGs in STAD
We initially normalized the gene expression data using the "limma" 

package, followed by conducting differential expression analysis on 
36 normal tissues and 410 GC tissues utilizing the "edgeR" package. 
The Differentially Expressed Genes (DEGs) in TCGA-STAD were 
identified based on a cut-off criteria of p-value<0.05, and |log2(fold 
change)|>1. Subsequently, we obtained the differential prognostic 
LRGs by overlapping the DEGs with lysosomal genes. Visualization 
of DEG volcanoes was performed using the "ggplot2" package, while 
Venn diagram were employed to illustrate overlapped LRGs. 
Correlation coefficients between genes were depicted using both the 
"corrplot" and "heatmap" packages, respectively, with clustering 
spectra also being generated.

To investigate the relevant biological functions of LRGs, we 
initially employed the "org.hs.egg.db" package to convert gene 
symbols into EntrezIDs. Subsequently, we utilized the enrichment 
function from the "ClusterProfiler" package for conducting Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis and the GO enrichment analysis included 
Cellular Components (CC), Molecular Functions (MF), and Biological 
Processes (BP).

Construction and evaluation of the risk model
We initially filtered the sample data in TCGA-STAD (Filtering 

criteria: Exclude the samples with incomplete survival information or 
survival time of less than 30 days). And finally obtained 415 TCGA-
STAD samples, and performed log2 transformation on the gene 
expression data. These 415 samples were used as the training set for 
TCGA-STAD analysis. Similarly, we applied the same process to the 
GSE66259 dataset and identified 300 samples after screening as the 
external validation set.

To identify differential prognostic LRGs, univariate Cox regression 
analysis was conducted using the "survival" package, resulting in a 
selection of 48 genes (p-value<0.05). Further screening was performed 
using least absolute shrinkage and selection operator regression 
(LASSO) with parameters set as follows: family="Cox", alpha="1", 
leading to the identification of 11 genes (p-value<0.05). Multivariate 
Cox analysis was then employed on these 11 genes, followed by 
stepwise method-based screening to identify critical prognostic genes 
and to obtain risk coefficients for each of them. Ultimately, 7 key 
LRGs were identified from this process. A risk score model was 
established based on these 7 LRGs using the formula:

   Where, coei denotes the multivariate Cox regression coefficient of each 
prognostic LRGs, and xi denotes its  corresponding expression  level.
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This formula was utilized to calculate individual risk scores for both
training and validation sets.

To evaluate the prognostic value of the risk model, we initially
categorized the samples into high-risk and low-risk groups based on
the median risk score. Subsequently, we employed the "survival",
"timeROC", and "ggplot2" packages to generate Receiver Operating
Characteristic (ROC) curves for subjects at 1, 3, and 5-year survival
time. The Area under the ROC Curve (AUC) was utilized to assess the
predictive performance of our risk model. Additionally, Kaplan-Meier
survival curve analysis was conducted to compare the survival
patterns between high-risk and low-risk groups predicted by our
model. Furthermore, the external dataset GSE66259 was employed for
validation purposes.

Analysis of independent prognosis factors and construction
of the nomogram model

To assess whether our constructed risk scores and other clinical
characteristics of TCGA-STAD patients (gender, age, T-stage (T1, T2,
T3, T4), N-stage (N0, N1, N2, N3), M-stage (M0, M1, M2), and
staging) were independent prognostic factors, we initially identified
significant clinicopathological factor for predicting GC patients'
prognosis using univariate Cox regression analysis. Subsequently,
clinical factors with p-value<0.05 were further selected through
stepwise Cox regression employing the "cpxh" function ("rms"
package). Finally obtained clinical factors were utilized to construct a
prognostic model and develop a nomogram for survival prediction
using multivariate Cox regression. The performance of the nomogram
model was validated by ROC curves at 1-year, 3-year, and 5-year
time.

Gene enrichment analysis of high-risk and low-risk groups
To investigate the biological differences between the high-risk and

low-risk groups, we conducted a Gene Set Enrichment Analysis
(GSEA) on the TCGA high-risk and low-risk groups. Subsequently, all
DEGs in these risk groups were subjected to GO enrichment and
KEGG pathway analysis using the "clusterProfiler" software package.
The results were visualized using "path view" and "enrichplot"
software packages.

Immunotherapy analysis and mutation analysis in risk
groups

To investigate the distribution of immune cells surrounding tumor
cells, we utilized function "subsea" in "GSVA" package to quantify the
abundance of 28 immune cells in GC samples. Additionally,
leveraging nucleotide mutation data for STAD patients, we employed
the "TMB" function ("mdftools" package) to calculate the Tumor
Mutation Load (TMB) for each STAD sample. Subsequently, we
visualized these mutations to discern differences in TMB between
low-risk and high-risk groups.

Results

Identification of differential prognostic LRGs in GC cells
The idea of our study is illustrated in Figure 1. To identify

differentially expressed LRGs in GC, we initially obtained 410 GC
and 36 normal tissues from the TCGA-STAD dataset, followed by
conducting differential expression analysis using the "edgeR" package

(p-value<0.05, |log2(fold change)|>1). This analysis revealed a total of
4172 genes (2051 up-regulated and 2121 down-regulated, as shown in
Figure 2A) that exhibited significant differential expression between
GC and normal tissues. Subsequently, we overlapped these identified
DEGs with the set of 875 known lysosomal genes available on the
AmiGO2 database, resulting in the identification of a subset
comprising 145 differentially prognostic LRGs (as depicted in Figure
2B). Furthermore, to facilitate further investigation, we ranked these
differentially prognostic LRGs based on their p-values in ascending
order and generated correlation coefficients along with heat maps for
the top 10 differentially prognostic LRGs (Figures 2C and D). The
ACAN and ACE genes are strongly correlated, with mutations in the
ACAN gene associated with spinal dysplasia and the ACE gene
associated with hypertension and kidney disease (Figure 2C) [17].
There is a gap in gene expression patterns in the two states of tumor
and normal (Figure 2D) [18].

Figure 2: Expression of lysosome-related genes in gastric cancer
and normal tissues. (A) Volcano plots of differentially expressed
genes. (B) Wayne plots of differentially expressed genes in TCGA-
STAD associated with lysosomal genes in AMIGO2. (C) Correlation
coefficient plots of the top 10 differential bases. (D) Hierarchical
clustering of the top 10 differentially expressed lysosomal genes.

Functional analysis of LRGs
To investigate the relevant pathways associated with 145

differentially prognostic LRGs in tumor development and progression,
we conducted enrichment analysis of LRGs using GO and KEGG
(Figures 3A and B). A total of 733 GO-enriched terms were identified.
Under Biological Process (BP), the pathways primarily enriched
included transition metal ion transport, positive regulation of protein
catabolic process, and lysosomal transport. Under Cellular Component
(CC), the enriched terms consisted of azurophil granule lumen, late
endosome, lysosomal lumen, and secretory granule lumen, among
others. Under Molecular Function (MF), the main enrichments were
observed for proteinase binding and glycosaminoglycan binding
(Figure 3A). KEGG enrichment analysis revealed significant
involvement of neuroactive ligand-receptor interaction pathway as
well as protein digestion and absorption pathway along with other 34
pathways in GC tumorigenesis (Figure 3B). Furthermore, a network
diagram was constructed to visualize the associations within this
pathway set where lysosomal transport, transition metal ion transport,
regulation of trans-synaptic signaling, myeloid leukocyte activation,
vacuolar transport emerged as highly interconnected components
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(Figure 3C). In summary, we have identified a panel of 145
differentially prognostic LRGs in GC that are significantly enriched in
key pathways involved in tumor development. These findings provide
valuable insights into understanding the role of LRGs.

Figure 3: KEGG and GO enrichment analyses of differentially
prognosticated lysosome-related genes and PPI networks. (A) GO
enrichment analysis of 145 differentially prognostic LRGs. BP:
Biological Progress; CC: Cellular Component; MF: Molecular
Function. (B) KEGG pathway analysis of the 145 differentially
prognostic LRGs. (C) Association network diagram of pathway sets.

Construction of risk model
We initially performed univariate Cox regression analysis on the

145 differential prognostic LRGs, identifying 48 genes with
prognostic significance (p-value<0.05). Subsequently, we employed
LASSO regression to further screen these 48 prognostic genes and
obtained a final set of 11 genes that exhibited significant prognostic
significance based on the smallest cross-validation error (Figures 4A
and B). Multivariate stepwise Cox regression analysis revealed that a
predictive model comprising of 7 genes (TRIM29, EGF, GPC3, RETN,
RNASE3, GRP, and PSAL1) demonstrated the highest prognostic value
in determining patient outcomes, and risk score was calculated using
the formula: Risk score=0.05964 × TRIM29+0.08971 × EGF
+0.10998GPC3+0.08204×RETN+0.08986×RNASE3+0.06407×GRP
+0.04003×PSAPL1. After constructing the risk model, we divided our 
sample into high-risk and low-risk groups by utilizing the median risk 
score as a threshold. Risk curves based on these risk scores predicted a 
poorer prognosis for patients in high-risk group (Figure 4C). The AUC 
values of the ROC curves at 1, 3, and 5-years in our training set were 
all greater than 0.64, notably, the 3-year AUC value exceeded 0.7 
(Figure 4D). Additionally, Kaplan-Meier curves demonstrated higher 
survival rates among patients in the low-risk group compared to those 
in the high-risk group (Figure 4E).

In our validation set, the survival outcomes of patients in the high-
risk group remained inferior to those of patients in the low-risk group
(Figure 4F). The AUC values of the ROC curves in the validation set
were consistently above 0.6 (Figure 4H), indicating that our risk
scores exhibited excellent predictive performance. Furthermore,
significant differences were observed in the K-M survival curves
between high-risk and low-risk groups (Figure 4I).

Figure 4: Construction of the risk model. (A,B) Distribution plots
of LASSO coefficients for differential prognostic genes. (C) Risk
curves in the TCGA training set, scatter plots of survival and death,
and heat maps of model gene expression in the high and low-risk
groups. (D) ROC curves at 1, 3, and 5 years in the training set. (E) K-
M survival analysis curves for the high-risk and low-risk groups in the
training set (F) Risk curves, scatter plots of survival and death, and
heat maps of model gene expression in the high-risk and low-risk
groups in the GSE66259 external validation set. (H) ROC curves at 1,
3, and 5 years for the GSE66259 external validation set. (I) K-M
survival analysis curves for the high-risk and low-risk groups of the
GSE66259 external validation set.

Independent prognosis factors and accurate prediction of
the nomogram

The risk score was subjected to univariate Cox regression analysis
along with other clinical factors in the GC samples, revealing a
significant association between the risk score, stage, and age with GC
(Figure 5A). Subsequently, these significantly associated factors were
further analyzed using multivariate Cox regression analysis. The
findings revealed that the risk score, stage, and age could serve as
independent prognostic factors for patients with GC (p-value<0.05)
(Figure 5B). Notably, the significance of stage may be attributed to its
representation of N-stage indicating lymph node involvement.
Furthermore, a nomogram model incorporating risk score, stage, and
age was constructed (Figure 5C), exhibiting a consistency index of
0.681 on the nomogram. Additionally, the AUC values of ROC curves
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in predicting 1, 3 and 5-year survival time exceeded 0.69 (Figure 5D),
thereby confirming high accuracy in survival prediction.

Figure 5: Relationship between risk scores and clinicopathological
characteristics. (A) Forest plot of univariate Cox regression analysis of
risk score and clinicopathological characteristics. (B) Forest plot of
multivariate Cox regression analysis for significantly correlated
characteristics in univariate Cox regression analysis. (C) Column line
plots of constructed independent prognostic models. (D) ROC curves
for predicting 1, 3, and 5-year patient survival using column-line plots.
*p-value<0.05, **p-value<0.01, ***p-value<0.001.

Functional and enrichment analyses in high and low-risk
groups

To further investigate the difference in gene function and pathways
between the high-risk and low-risk groups, we analyzed the impact of
risk scores on tumor development using GSEA. GSEA analysis
revealed that significant enrichment of epidermal cell differentiation,
epidermis development, keratinization, and keratinocyte
differentiation in the high-risk group for BP term in GO analysis
(Figure 6A), as well as cell cycle, cytokine-cytokine receptor
interaction, fat digestion and absorption, neuroactive ligand-receptor
interaction among KEGG pathways (Figure 6B). Conversely, GSEA
analysis revealed that significant enrichment of chromosome
organization, chromosome segregation, DNA-templated DNA
replication, sister chromatid segregation in the low-risk group for BP
terms in GO analysis (Figure 6C), as well as cell cycle, fanconl
anemia pathway, fat digestion and absorption, and neuroactive ligand-
receptor interaction among KEGG pathways (Fig. 6D). We also
investigated the difference of gene function for MF and CC terms in
GO enrichment analyses between the high-risk and low-risk groups.

Figure 6: Functional enrichment analysis between high-risk and 
low-risk groups (A) GO-enriched BP terms in GSEA analysis of the 
high-risk group. (B) KEGG pathway analysis in GSEA analysis of the 
high-risk group. (C) GO-enriched BP terms in the GSEA analysis of 
the low-risk group. (D) KEGG pathway analysis in GSEA analysis of 
the low-risk group.

Relationship between the immune microenvironment and
immunotherapy

Relevant studies have demonstrated that the involvement of
lysosomes in regulating immune cell function. To further investigate
this, we utilized function "subsea" in "GSVA" package to calculate the
abundance of each immune cell in GC samples. The resulting box-
and-line plot revealed significant differences in immune cells between
high-risk and low-risk groups (Figure 7A). Specifically, CD4 T cells,
B cells, memory B cells, and T cells were expressed at significantly
higher levels in the low-risk group compared to the high-risk group,
indicating functional differences between these two groups.
Additionally, our analysis identified several differentially expressed
immune checkpoint genes including TNFSF4, CD276, NRP1,
TNFRSF4, LAIR1, TNFRSF9, and CD28 that were all up-regulated in
the high-risk group relative to their expression levels in the low-risk
group (Figure 7B).
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Figure 7: Correlation between risk score and immune cells (A) 
GSVA analysis of the differences in immune cells in the high-risk and 
low-risk groups in TCGA. (B) Differences in immune checkpoint 
genes between high-risk and low-risk groups. *p-value<0.05, **p-
value<0.01, ***p-value<0.001, ****p-value<0.0001. ns: no 
significance.

TMB analyses in the high-risk and low-risk groups
Somatic mutation data were downloaded using the "TCGAbiolinks"

package and visualized for TCGA-STAD patients (Figure 8A).
Mistranslated mutations were the most predominant mutation
classification, and Single Nucleotide Polymorphisms (SNPs) were the
most predominant type of mutation, with a median mutation value of
62 for each sample. MUC16, LRP1B, SYNE1, CSMD3, and FLG are
the top 10 mutated genes in both the high-risk and low-risk groups.
Classification information for both groups was combined with
mutation data to extract samples from each group. A waterfall map
was used to display the top 15 genes with the highest frequency of
mutations (Figures 8B and C). In the high-risk group, mutated genes
were present in 154 out of 171 samples (90.06%). The most frequently
mutated genes in this group included TTN (54%), TP53 (47%),
MUC16 (35%), LRP1B (30%), SYNE1 (27%), ARID1A (27%), FAT4
(26%), and CSMD3 (23%) (Figure 8B). In contrast, within the low-
risk group, mutated genes were present in 148 out of 167 samples
(88.62%). The highly-mutated genes within this cohort included TTN
(50%), TP53 (43%), ARID1A (28%), MUC15 (26%), LRP1B (26%),
CSMD3 (23%), SYNE1 (23%), and SPTA1 (20%) (Figure 8C).

Figure 8: Mutation analysis in the high-risk and low-risk groups
(A) General description of the mutation landscape in TCGA-STAD
patients. (B) Mutated loci in the high-risk group. (C) Mutation loci in
the low-risk group.

Discussion
GC is a rapidly emerging and highly malignant form of cancer in

terms of human cancer incidence, but the current conventional clinical
therapies for GC remain significantly limited [19]. Therefore, it is
imperative to explore novel and effective molecular markers to
enhance the clinical outcomes of GC treatment. Immunotherapy has
emerged as a pivotal approach in improving therapeutic efficacy
against lung cancer, with mounting evidence suggesting an association
between alterations in lysosomal biological functions and immune
cells as well as cancer development [20]. Nevertheless, there exists a
dearth of systematic investigation into differential LRGs among
patients with STAD at present. Hence, this study aims to investigate
the prognostic significance of LRGs in GC patients.

We first screened 7 key LRGs-TRIM29, EGF, GPC3, RETN,
RNASE3, GRP, and PSAPL1, for the construction of prognostic risk
model by univariate Cox, LASSO regression, and multivariate
stepwise Cox regression. There is accumulating evidence supporting
the relevance of these identified LRGs to malignant tumor prognosis.
Studies have demonstrated that the TRIM29 gene acts as a crucial
negative regulator of DNA viral and cytoplasmic DNA immune
responses by targeting STING degradation, and there present an
association between over-expression of the TRIM29 gene and
squamous cell carcinomas of the skin as well as ovarian cancer.

EGF, the earliest discovered growth factor, plays a pivotal role in
cell growth, differentiation, and proliferation. Previous study has
reported a positive correlation between EGF presence in GC and
infiltration as well as lymph node metastasis. Moreover, the detection
of EGF in human GC may indicate an elevated level of cancer
malignancy.

Although the precise function of the GPC3 gene remains elusive,
an increasing body of evidence suggests that GPC3 serves as a
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promising target molecule for early diagnosis of hepatocellular
carcinoma. Moreover, a novel imaging strategy utilizing GPC3-
targeted immune positron emission tomography has been developed to
facilitate early diagnosis of hepatocellular carcinoma. Consequently,
further investigation into the role of GPC3 in GC is warranted, with
the expectation that it may unveil a new target molecule for improving
early detection of this malignancy.

The RETN gene is capable of encoding resistin and adipokines in
the human body， exhibiting risk associations between resistin and
RETN with susceptibility to breast cancer and type 2 diabetes
mellitus. Furthermore, it has been suggested that polymorphisms in
RETN may contribute to an increased susceptibility to colon cancer
disease.

RNASE3, a member of the RNASEA superfamily involved in host
immunity, is expressed by leukocytes and possesses direct
antimicrobial and immunomodulatory properties, prognostic models
for idiopathic pulmonary fibrosis have been developed by researchers
utilizing five types of immune cells, including RNASE3, resulting in
improved outcomes.

GRP belongs to the belladonna peptide family of gastrin-releasing
peptides, and it acts as an autocrine growth factor that stimulates the
proliferation of various cancer cells and regulates numerous functions
within the gastrointestinal and central nervous systems. Furthermore,
immune responses triggered by novel chimeric proteins targeting GRP
have demonstrated inhibition of mouse mammary tumor cells EMT-6.
Additionally, PSAPL1 has been identified as a valuable biodiagnostic
marker for GC.

The risk score model was evaluated using training and validation
sets. Firstly, the samples were divided into two groups based on the
median risk score threshold, and the low-risk group exhibited a
significantly longer survival time compared to the high-risk group.
Additionally, the validity of the risk score's predictive performance
was confirmed by K-M curve and ROC curve analysis. Univariate and
multivariate Cox analyses further demonstrated that risk score served
as an independent prognostic factors for GC, and a nomogram model
incorporating risk score, stage, and age confirmed high accuracy in
predicting 1, 3, and 5-year survival time. Finally, we verified the
rationality of our risk model from biological functions. Immunoassays
were conducted to explore functional differences between the high-
risk and low-risk groups. The GO enrichment analyses of the BP term
revealed differential results in the first four biological processes
between the high-risk and low-risk groups, while only one of the first
four pathways showed a significant difference in the KEGG pathway
analyses between these two risk groups.

With advancements in science and medicine, immunotherapy has
emerged as a groundbreaking approach to cancer treatment, with
Immune Checkpoint Inhibitors (ICIs) playing a pivotal role in altering
the treatment and prognosis of gastric cancer. Hence, we also
investigated the association between the risk score model and immune
checkpoints and revealed significant differential expression of immune
checkpoint genes such as TNFSF4, CD276, NRP1, TNFRSF4, LAIR1,
TNFRSF9, LAIR1, and CD28 between the high-risk and low-high
groups. Infiltration of immune cells into tumor tissues along with their
modulation of cytokine signaling significantly influences the
biological function of cancer cells. Our findings demonstrate a
significantly higher expression level of CD4 T cells, B cells, memory
B cells, and T cells in low-risk groups compared to high-risk groups.
These results are consistent with previous research.

We observed that TTN and TP53 exhibited the highest mutation
frequencies in both high-risk and low-risk groups, which are closely
associated with immunotherapy. TTN/TP53 co-mutations may be a
potent predictor of OS and chemotherapeutic response in patients with
lung cancer. High mutation of TTN is positively correlated with the
survival rate of GC patients, and the TTN gene is important in
improving the level of immunity. TP53 oncogene mutations are
common in 50% of human cancers, and TP53 act as a transcription
factor capable of directly regulating the expression of approximately
500 genes.

However, our study still has certain limitations. Firstly, we employ
the traditional statistical model to identify the LRGs. Although our
model demonstrates excellent performance in prognostic prediction
for GC patients, leveraging machine learning or deep learning
algorithms may yield more accurate predictive outcomes. Secondly,
further experimental exploration is required to elucidate the role of
these 7 LRGs we identified in GC pathologic function. Addressing
these aforementioned shortcomings will be the primary focus of our
future work.

Conclusion
In this study, we have identified 7 key prognostic LRGs associated

with GC and developed a risk score model based on these genes. Our
model has demonstrated high accuracy in predicting the OS of patients
with GC. Furthermore, significant differences were observed in the
immune microenvironment, immunotherapy response, as well as TTN
and TP53 mutations between the high and low-risk groups. These
findings provide valuable insights for future studies aiming to improve
the prognosis of GC patients through lysosomal-related mechanisms.
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