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Editorial
Despite optimal treatments and evolving standard care, the 

median survival of patients diagnosed with WHO grade IV gliomas 
i.e. glioblastoma (GBM) is only 12 to 15 months [1]. GBM is highly
vascularized cancer, which is considered as most lethal during the
first year after initial diagnosis despite resection and radiotherapy
and/or chemotherapy [1]. Higher micro vessel density in GBM is
significantly correlated with the worst prognosis and is therefore a
target for antiangiogenic therapy (AAT) [2,3]. Given the importance
of VEGF pathway in neovascularization, several approaches have been
developed to suppress VEGF signaling [4]. Surprisingly, it resulted to
an enhanced vasculature and invasive tumor phenotype in GBM [5,6].
In addition, anti-VEGF therapy induced hypoxia inducible factor
1 alpha (HIF1-α) expression in GBM patients [7] as well as in mice
models of glioma [8]. Several AATs showed no to minimal effect [9-
11], when targeting VEGFR tyrosine kinase activity using cediranib,
sunitinib, and imatinib tested in GBM patients [2]. Vatalanib treatment 
induced over-expression of VEGF as well as the Flk-1/VEGFR2
receptor tyrosine kinase, especially at the rim of the tumor in rat model 
[12]. These findings provided direct evidence that VEGF can act as a
negative regulator of tumor neovascularization.

In GBM tumor, vessels are tortuous, disorganized, highly 
permeable, and have abnormal endothelial cells (ECs), pericyte 
coverage, and basement membrane structure [2,13]. There is a 
known heterogeneity of vasculature development in tumor condition. 
Conventionally, tumor vessel formation occurs through angiogenesis, 
which is mediated by proliferation and migration of resident ECs 
[14]. Instead, vasculogenesis originates from circulating bone 
marrow derived endothelial progenitor cells (EPCs), which express 
VEGF receptor 2 (VEGFR2), are recruited by VEGF followed by 
differentiation and incorporation into new tumor blood vessels [15]. 
In addition, hypoxia is a common feature of GBM, which is involved 
in EPCs recruitment through up-regulation of HIF1-α, induction 
of stromal cell derived factor-1 alpha (SDF1α), secretion of various 
proangiogenic factors and recruitment of bone marrow derived cells 
(BMDCs) or EPCs due to presence of CXCR4 receptors on EPCs [16-
18]. Depending on tumor development, neovascularization occurs by 
alternate mechanisms such as vascular mimicry [19,20] and vascular 
transdifferentiation from glioma stem cells [21,22]. On the contrary, 
glioma stem cells rather form pericytes instead ECs [23]. Interestingly, 
tumor cells that functionally participate in the vessel lining are detected 
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Abstract
Therapy induced neovascularization is an emerging cancer hallmark, which has been observed during the 

antiangiogenic treatments (AATs) to suppress angiogenesis in glioblastoma and other cancers. Clinicians and 
researchers have following major questions such as (1) why the AATs are inducing unwanted vasculature? (2) What 
are the molecular mechanisms associated with this daunting outcome? (3) What are signature targets to combat tumor 
angiogenesis or vasculogenesis? Focused strategies to investigate these aforementioned questions are required 
to answer to proceed further. Recent studies have shown the importance of microenvironment in the regulation of 
angiogenesis and/or neovascularization both at cellular and molecular levels. Better agents with broad range of 
targets could help to reprogram the tumor microenvironment as well as to combat the tumor and therapy induced 
neovascularization.

rarely in human GBM [24] and, therefore, it reduces the significance 
of vascular transdifferentiation over other dominant mechanisms 
such as vasculogenesis through BMDCs. However, detailed molecular 
mechanisms of regulation of BMDCs in vasculogenesis are poorly 
studies at cellular and molecular levels.

Previously, tumor was considered as single entity, however, 
uncontrolled interaction between tumor cells and associated stroma 
is critical in tumor microenvironment for initiation and progression 
of cancer [25]. Similarly, each cancer hallmark such as angiogenesis 
or neovascularization is regulated by interaction of microenvironment 
through series of steps [26]. Recently, experimental studies have shown 
the emerging role of microenvironment in GBM development. For 
example, chemo attractant signaling through tumor cells secreted 
CSF-1 recruit macrophages and regulate neovascularization at the 
tumor periphery, which is rich in angiogenic factors [27,28]. Similarly, 
recurrent GBM showed an increased infiltration in myeloid populations 
in the tumor bulk and in the infiltrative regions after AAT. Higher 
numbers of CD11b+ cells correlated with poor survival among these 
patients. These data suggest that tumor-associated macrophages may 
participate in escape from AAT [29], represent a potential biomarker 
of resistance and a potential therapeutic target in recurrent GBM [29]. 
However, more studies are required to understand the mechanism 
of this relapse during AAT, which is associated with increase EPCs/
BMPCs and macrophage recruitment/polarization at cellular level.

At the molecular level, release of soluble cytokines and chemokines 
are recognized as the classical mechanisms underlying cell-to-cell 
communication within the tumor microenvironment [30]. Recent 
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findings on vesicle-based signaling by exosomes (30–100 nm) are 
recognized as a novel mode of cell–cell communication during 
tumor progression [31]. Exosomes are the luminal membranes of 
the late endosomes/ multi-vesicular bodies, which released from 
the cell membrane of donor cells and binds to recipient cells [32]. 
Exosomes are also released from the surface of normal healthy cells as 
a physiological phenomenon. However, number of exosomes release 
increases upon cell activation, hypoxia, irradiation, injury, exposure 
complement proteins, and as a result of cellular stress [31]. Exosomes 
are now considered biologically active entities that perform a variety 
of extracellular functions including interactions with the cellular 
microenvironment, such as immunological activation, cell recruitment, 
transfer of genetic material and thus consider as bona fide secreted 
factor [32,33]. Since, the hypoxia is a characteristic feature of GBM; 
secreted exosomes reflect hypoxic status of the tumor cells. Exosomes 
are enriched in several hypoxia-regulated proteins such as matrix 
metalloproteinase 9 (MMP9), pentraxin 3 (PTX3), IL8, PDGFAB/ AA, 
CD26, caveolin 1 (CAV1), and plasminogen activator inhibitor 1 (PAI1) 
[34]. Kucharzewska et. al, reported that expression of these factors 
was correlated with significantly enhanced tumor vascularization 
due to paracrine activation of ECs by tumor cell secreted exosomes 
and autocrine tumor growth under hypoxic condition [34]. However, 
authors failed to report the effect of AAT on hypoxia-regulated 
exosomes and their role in promotion of neovascularization in GBM. 
In addition, hypoxia was shown to induce specific miRNA signatures 
[35-37]. Therefore, it will be interesting to investigate if hypoxia could 
be the inducer of miRNA processing and export through exosomes, 
which needs to be investigated using AAT in GBM. 

Given the aforementioned limitations in targeting candidate 
molecule/ pathway in GBM, such as anti-VEGF therapy suggests 
that tumor-induced neo-vasculaization is intricate and needs special 
agent, which has broad effect. MiRNAs have been shown to display 
broader range of targets because of partial to complete gene sequence 
homology of miRNA with target; therefore, a single miRNA could have 
hundreds of targets and regulate diverse cellular pathways. Since the 
miRNA-based therapeutics in cancer is growing [38-40], investigations 
for signature micro RNAs are required in GBM tumor. Alteration of 
discovered signature miRNAs will provide the opportunity to treat 
the GBM by reprogramming of tumor microenvironment due to 
broad effect of miRNA over other available antiangiogenic drugs. In 
conclusion, investigation of role of microenvironment both at cellular 
and molecular levels could provide better understanding of therapy 
induced vasculature development and hence answer to the current 
clinical trials and treatment strategies in patients with GBM. 
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