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Several clinical studies suggest an involvement of PKR in the 
physiopathology of AD. Post mortem studies show a raise of phosphorylated 
PKR co-localizing with phosphorylated [15]. In Cerebrospinal Fluid (CSF), 
levels of PKR and P-PKR discriminate control from AD patients [16]. 
Furthermore in longitudinal study, high CSF phosphorylated PKR levels 
were associated with faster cognitive decline [17]. CSF is not routinely 
collected in clinical practice and blood sample is less invasive and easier 
to perform. Our previous results showed PKR involvement in PBMCs of 
AD patients with a negative correlation between the level of PKR activation 
and cognitive test scores [18]. The aim of this study was to determine 
relationship between PKR and its activation in PBMCs with the cognitive 
decline through a 2-years follow-up of AD patients.

Materials and Methods
Chemical

Ficoll Histopaque® 1077, newborn calf serum heat inactivated, 
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Introduction 
Alzheimer’s disease (AD) is a neurodegenerative pathology marked 

by cognitive disorders. Post mortem studies of AD patients show senile 
plaques and neurofibrillary tangles. Cause of neuronal degeneration is not 
completely resolved and many pathogenic mechanisms like inflammation 
[1], autophagy [2] or metabolic alterations [3] are involved.

The double-stranded RNA-dependent protein kinase (PKR) 
is an ubiquitous cellular kinase involved in several pathways like 
inflammation [4], apoptosis [5] and protein synthesis [6]. PKR can be 
activated by Protein Activator of the Interferon-Induced Protein Kinase 
(PACT) in a phosphorylated form (PT451-PKR) [7], full length PT451-
PKR can be cleaved in a more active form (C terminal catalytic kinase 
domain (KD), PT451-PKR-KD) [8]. PKR is involved in inflammation via 
nuclear factor-kappa B (NF-κB) pathway activation through interaction 
with the Inhibitor of KappaB Kinase beta (IKKβ), a subunit of the IKK 
complex, leading to nuclear translocation of NF-κB [4]. PKR activation 
down-regulates translation by eIF2α phosphorylation [6]. In Peripheral 
Blood Mononuclear Cells (PBMCs) from AD patients, in tri-culture of 
neurons/astrocytes/microglia and in transgenic mice, treatment with 
a specific PKR inhibitor highly decreases pro-inflammatory cytokine 
production [9-11]. In vitro studies showed relationship between PKR 
and AD specific lesions. In cell culture, Aβ exposition induces PKR 
activation which leads to apoptosis [12]. In return, PKR seems involved 
in Aβ production by the regulation of BACE1 [13]. Similarly, PKR after 
activation by Glycogen synthase kinase 3 beta (GSK-3β) participates in 
Tau phosphorylation [14].
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sodium fluoride (NaF), phenylmethylsulfonyl fluoride (PMSF), protease 
and phosphatase inhibitor cocktails, sterile filtered dimethylsulfoxide 
HybriMax® (DMSO), Triton X100, dithiothreitol (DTT) and all reagent 
grade chemicals for buffers were obtained from Sigma (St Quentin 
Fallavier, France); RPMI 1640 medium, L-glutamine, 5000 units of 
penicillin (base) and 5000µg of streptomycin (base)/mL mixture, 
Quant-it protein assay, NuPAGE 4-12% Bis Tris 1.5 mm gel, NuPAGE 
antioxydant, MES SDS running buffer, NuPAGE iBlot™ nitrocellulose 
Transfer Stacks from Gibco-Invitrogen (Fisher Bioblock Scientific 
distributor, Illkirch, France). For western blot, primary antibodies rabbit 
anti-PT451PKR as custom antibodies produced by Eurogentec (Seraing - 
BELGIUM), rabbit anti-PKR from Cell Signalling (Ozyme, St Quentin 
Yvelines, France) and mouse anti-β-actine from Sigma (St Quentin 
Fallavier, France). Secondary antirabbit IgG antibody conjugated with 
Horseradish Peroxydase were purchased from Cell Signalling (Ozyme, 
St Quentin Yvelines, France), secondary anti-mouse IgG conjugated 
with Horseradish Peroxydase and ECL plus kits were purchased from 
GE Healthcare Europe GmbH (Velizy Villacoublay, France).

Patients

Patients were selected between November 2010 and December 
2012 in the memory center of Poitiers University Hospital in an 
ancillary study of a national clinical research project (CYTOCOGMA). 
AD was diagnosed according to NINCDRDS-ADRDA criteria with a 
MMSE score between 16 and 25 at inclusion. Exclusion criteria were 
any other neurological disease than AD, ongoing inflammatory state or 
anti-inflammatory treatment. 

Patients had a clinical and neuropsychological assessment with 
MMSE and Alzheimer’s disease assessment scale (ADAScog) (the 
higher the score the lower the performance) at diagnosis, after 6 
months, one year and two years of follow-up. Biological assessment was 
conducted at baseline and after one and two years.

PBMCs extraction, culture and cellular lysis

Methods have been extensively used in our laboratory and previously 
described [9,19-21]. PBMCs were isolated by Ficoll Histopaque® density 
gradient centrifugation within two hours after blood test. Using a 
KOVA cell, cells were counted and seeded at 106 cells/well in six-well 
plates. After 48 hours of culture, cells were isolated from the medium 
by centrifugation. Cells were lysed using a lysis buffer (50 mM Trizma® 
base, 50mM NaCl pH 6.8, 1% Triton X100, 1mM PMSF, 50mM NaF, 
1% protease inhibitor cocktail and 1% phosphatase inhibitor cocktail). 
Proteins levels were assessed using Quant-it® protein assay. Samples 
were preserved in the freezer 80 degrees.

Western blot

Each sample was taken for a quantity of 30 µg of proteins per well 
and diluted with electrophoresis buffer contening 0.05M DTT. Each 
sample was boiled at 100°C during 5 minutes. Proteins were separated on 
NuPAGE gel with 200 V during 35 minutes. Proteins were transfered to 
NuPAGE iBlot™ nitrocellulose Transfer Stacks using iBlot™ Gel Transfer 
Device. Membranes were blocked for two hours at Room Temperature 
(RT) in Tris-buffered saline/Tween (TBST: 20mM Tris-HCl, 150mM 

NaCl, pH 7.5, 0.05% Tween 20) containing 5% BSA and 0.21% NaF. 
Membranes were incubated with primary antibodies in blocking buffer 
overnight on a shaker at 4°C. The primary antibodies used were rabbit 
anti-PT451PKR (1:100) which detect threonine 451 phosphorylated from 
both full-length (74 kDa) and catalytic fragment of PKR (35 kDa). It 
was demonstrated that the released KD domain of PKR is constitutively 
active [22], which is well supported by structure studies [23]. Moreover, 
the caspase-generated fragments of PKR cooperate to activate full-
length PKR and amplify the translation inhibitory signal [8]. Other 
primary antibodies rabbit anti-total PKR (1:500), mouse anti-β-actine 
(1:100,000) were also used. Membranes were washed twice with TBST 
during 10 minutes at RT on a shaker. Membranes were incubated 
with secondary antibodies conjugated with the peroxydase according 
to the primary antibody origin during one hour at RT. The second 
antibodies used were goat anti-rabbit IgG (1:1000) and sheep anti-
mouse IgG (1:1000). Membranes were washed twice and incubated 
with chemiluminescence ECL plus® system, luminescent signal was 
captured by Gene Snap software and analyzed by Gene Tools software, 
both with Gbox system® (Syngene, Ozyme distributor, France). Protein 
expression level was reported to the actin expression level and expressed 
in arbitrary units. Activation of full length PKR was calculated using 
the ratio between PT451-PKR and total PKR. Activation of PKR-KD was 
calculated using the ratio between PT451-PKR-KD and total PKR.

Statitical analysis

All statistical analyses were carried out using the SAS 9.2 software 
package (SAS Inc., Cary, NC, USA). Quantitative variables are described 
with mean and Standard Deviation (SD). Biological values measured at 
baseline, M12 and M24 for AD patients were compared by non-parametric 
Friedman’s test for repeated measures followed by post-hoc Sheffé’s test 
if necessary. The correlations between the expression of total PKR or its 
phosphorylated forms, its activations (full-length PKR and PKR-KD) 
and cognitive scores were investigated with the Spearman correlation 
coefficient (rho) calculation. The level of significance was p<0.05.

Results
Patients characteristics

Thirty-seven patients were included, among which thirty-one 
were followed during two years. Two patients died and 4 were lost to 
follow-up. Mean age at baseline (D0) was 78.3 years. Table 1 shows 
neuropsychological characteristics at D0, after 6 months (M6), and 
one and two years of follow-up (M12 and M24). During the two years 
follow-up we observed an average decrease of 3.7 points for MMSE and 
an average increase of 4.2 points for ADAScog. 

Longitudinal PKR activation in PBMCs of AD patients

PKR consists of two functionally distinct domains: An aminoterminal 
regulatory domain and a carboxyl-terminal catalytic domain [24]. The 
regulatory domain consists of two dsRNA-binding motifs, followed 
by a spacer. Binding of dsRNA exposes the catalytic site and induces 
dimerization of PKR. Dimerization allows autophosphorylation, 
rendering PKR active [25]. However, dsRNA-independent protein 
activators of PKR, such as PACT have been identified [7]. The T451 site 

Mean (SD) [Extremes]
D0 M6 M12 M24

n = 31 n =28 n =31 n = 29
MMSE 20.5 (2.6) [16-25] 19.7 (3.5) [13-25] 19.1 (3.9) [12-26] 16.8 (4.9) [7-25]
ADAScog 15.6 (5.9) [6.9-28.5] 16.4 (7.3) [7.3-36.8] 16.7 (7) [5.9-31] 19.8 (10.1) [6-42.9]

Table 1: Clinical and neuropsychological characteristics of patients.
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of PKR is one of the first active sites leading to its autophosphorylation 
at different sites and homodimer formation, resulting in its activation 
[26]. Figure 1 shows PKR expression and its activation at baseline 
and during the follow-up. A Friedman’s test indicated significant 
differences for expression of total PKR (p=0.0001), full-length PT451PKR 
(p=0.0247) and PT451PKR-KD activation (p=0.0053) during the follow-
up. However, a Scheffé’s post-hoc test revealed that only the levels of 
total PKR expression at D0 was significant to those at M12 (increase 
of 215% at M12). The decrease of the PT451PKR-KD activation was no 
significant between D0 and M24, it reached 74.3%.

Western blots were performed to determine the expression of 
total PKR (74kDa) and its phosphorylated forms: full-length PT451PKR 
(74kDa) and PT451PKR-KD (35kDa) as described in method section. 
Protein expression level was reported to the actin expression level 
(42kDa) and expressed in arbitrary units. Activation of full-length PKR 
was calculated using the ratio between full-length PT451-PKR and total 
PKR. Activation of PKR-KD was calculated using the ratio between 
PT451-PKR-KD and total PKR. Representative blots showed protein 
expression in PBMCs of the same patient at D0, M12 and M24. A 
Friedman’s test showed significant differences for total PKR (p=0.0001), 
full-length PT451PKR (p=0.0247) and PT451PKR-KD activation 
(p=0.0053) during the follow-up. A Scheffé’s post-hoc test indicated 
p<0.05 between D0 and M12 for the levels of total PKR expression.

Correlation of PKR and activated PKR at baseline with 
cognitive decline 

We found a correlation between total PKR expression at baseline 
and absolute variation of MMSE at 6 months (r=0.34, p=0.0497). 
We found a correlation between PKR-KD activation at baseline and 
cognitive decline at 6 months with absolute and relative variation of 
ADAScog (r=0.33, p=0.0506 and r=0.33, p=0.0453, respectively).

PKR and its activation of full PKR or PKR-KD strongly correlated 
with cognitive decline at one year (Table 2). No correlation was found 
with PT451-PKR or PT451-PKR-KD. We found a correlation between PKR-
KD activation and relative variation of ADAcog at two years (r=0.36, 
p=0.0407). Among the three parameters studied at baseline: total PKR 
expression, full-length PKR activation and PKR-KD activation, only the 
activation of PKR-KD was correlated with each assessment of cognitive 
score (6, 12 and 24 months). This activation could be then a good 
predictive biomarker of the cognitive decline in AD. No correlation 
was found between PKR and its activation at M12 and cognitive decline 
between M12 and M24 assessed by ADAScog or MMSE.

Discussion
In this longitudinal study, results show that total PKR levels and 

the activation of this kinase in PBMCs are associated with individual 
cognitive decline at one year in newly diagnosed patients with AD at an 
early stage (median MMSE score at 20.5) and at two years with a lower 
correlation. Previous studies report a negative individual correlation 
between full length PKR activation and cognitive status in patients at 
an advanced stage with a medium MMSE score of 15.4 points [18]. 
Dumurgier et al. reported that a higher level of phosphorylated PKR 
in CSF at the T446 site was associated with a more marked decline in 
patients with a medium MMSE score of 20.5 at baseline [17]. We report 
for the first time individual correlation of PKR activation in PBMCs with 

Figure 1: PKR expression and its activation in PBMCs of AD patients during the follow-up.

 Total PKR Full PKR activation PKR-KD activation
AV ADAScog r=- 0.4; p=0.0134 r=0.45; p=0.0051 r=0.40; p=0.0126
RV ADAScog r=-0.49 ; p=0.0024 r=0.54; p=0.0009 r=0.48; p=0.0033

Correlations were performed using Spearman correlation coefficient (rho) 
calculation, level of significance was p<0.05.
Table 2: Correlation between PKR and its activation with ADAScog Absolute 
Variation or Relative Variation (AV and RV) at one year
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individual cognitive decline. We chose to assess PKR phosphorylation 
at the T451 site because it is one of the first sites of phosphorylation, 
using custom antibodies which have shown their reliability in previous 
studies [9,18,27].

We assessed expression of PKR and its phosphorylated forms using 
western blot technique with results expressed in arbitrary units. These 
data were used to calculate PKR activation. Statistical analysis did not 
show significant differences during the two years follow-up excepted 
for total PKR expression which was increased at M12 compared to 
D0. However, a great variability of values was observed for the PKR 
expression by western blot, limiting other significant differences with 
non-parametric statistical tests. Moreover western blot quantifies only 
the relative expression of proteins. It would then be interesting to 
develop an ELISA test to determine the absolute quantity of PKR and 
its phosphorylated forms.

To our knowledge, this is the first longitudinal study of PKR 
activation in the context of AD, as previous reports were transversal. 
Our results show a strong correlation between total PKR expression 
or its activation and cognitive decline assessed by ADAScog but less 
correlation with MMSE. An explanation could be that ADAScog scale, 
which is often used as primary endpoint in randomized trials, is a more 
global scale with a larger range. MMSE may be less sensitive to identify 
light cognitive variation. The strongest correlation was found with 
cognitive decline after one year. Furthermore, the activation of PKR-
KD was highly correlated with absolute and relative ADAScog variation 
at all assessments M6, M12 and M24, indicating that this ratio of PT451-
PKR-KD/total PKR could be a good predictive biomarker in AD. With 
the evolution of the disease, the severity of the cognitive degradation 
could no longer reflect the progression of the disease. Our results 
suggest an early involvement of PKR which is stable over time followed 
by other mechanisms like inflammation and autophagy, because PKR 
has many downstream targets.

Thus PKR activation can predict cognitive decline by its 
implication in several pathways. Beside amyloid plaques and 
neurofibrillary tangles, inflammatory process is involved in AD 
[28]. PKR plays a critical role in the control of pro-inflammatory 
cytokine production [29] particularly in the context of AD [9]. PKR 
activation may also promote neuronal death by down regulation of 
translation and pro apoptotic effects [30].

Our study has some limitations. First, all patients were included 
in the solo center of Poitiers and the number is limited. PKR and its 
activation need to be compared with other biomarkers such as brain 
atrophy or CSF markers. Similarly a comparison of PKR activation in 
PBMCs and in CSF should be done.

Conclusion
Our results show that PKR activation negatively correlates with 

cognitive decline in newly diagnosed AD patients at an early stage of 
the disease. The PKR-KD activation could be used as an early pronostic 
marker but our results need to be confirmed in a larger cohort and 
assessment of PKR should be performed using ELISA technique that 
requires to be developed directly into PBMCs without culture.
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