Editorial Open Access

Inflammation: Pervasive Disease Driver, Therapeutic Target

Dr. S. Singh*

Dept. of Biochemistry, Maplewood University, Punjab, India

*Corresponding Author: Dr. S. Singh, Dept. of Biochemistry, Maplewood University, Punjab, India, E-mail: ssingh@maplewood.edu

Received: 03-Nov-2025, Manuscript No. bcp-25-173263; Editor assigned: 05-Nov-2025, PreQC No. bcp-25-173263 (PQ); Reviewed: 19-Nov-2025, QC No.

bcp-25-173263; Revised: 24-Nov-2025, Manuscript No. bcp-25-173263 (R); Published: 01-Dec-2025, DOI: 10.4172/2168-9652.1000554

Citation: Singh DS (2025) Inflammation: Pervasive Disease Driver, Therapeutic Target. Biochem Physiol 14: 554.

Copyright: © 2025 Dr. S. Singh This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

This compilation reviews the central role of inflammation in diverse pathologies, including metabolic disorders, aging ("inflammaging"), neurodegeneration (Alzheimer's disease), and cancer. It highlights how chronic inflammation, driven by factors like oxidative stress, gut dysbiosis, and immune dysregulation, contributes to disease progression. The data explores therapeutic strategies from pharmacological interventions and lifestyle changes to targeting specific mediators and utilizing pro-resolving molecules. Acute inflammatory responses, such as cytokine storms, are also discussed. The overarching theme emphasizes inflammation as a critical common pathway and a key therapeutic target for improving patient outcomes across various conditions.

Keywords

Inflammation; Metabolic Disorders; Inflammaging; Neuroinflammation; Alzheimer's Disease; Gut Microbiota; Cytokine Storm; Specialized Pro-resolving Mediators; Autoimmune Disease; Cancer

Introduction

Inflammation is a fundamental biological response, essential for host defense, yet its dysregulation underpins a myriad of chronic diseases. This pervasive process contributes significantly to metabolic disorders, where the intricate relationship between inflammation, oxidative stress, and conditions like obesity, diabetes, and cardiovascular diseases is detailed. Underlying mechanisms such as inflammasome activation, mitochondrial dysfunction, and endoplasmic reticulum stress are critical in disease progression, prompting diverse therapeutic strategies including pharmacological interventions, dietary adjustments, and lifestyle modifications aimed at improving patient outcomes[1].

Beyond metabolic dysfunction, a chronic, low-grade inflammatory state termed "inflammaging" is intrinsically linked with aging. This process is fueled by factors like cellular senescence, mitochondrial dysfunction, altered gut microbiota, and immune dysregulation, driving detrimental age-related outcomes such as increased susceptibility to chronic diseases and reduced life expectancy. Modulating inflammaging offers a promising avenue for promoting healthy aging[2].

Neuroinflammation also plays a critical role in neurodegenerative conditions, notably Alzheimer's disease (AD). Here, the dynamic phenotypes of microglia, transitioning between proinflammatory (M1) and anti-inflammatory/resolving (M2) states, significantly influence amyloid beta clearance, tau pathology, and neuronal survival. Therapeutic approaches often focus on modulating these microglial responses to alleviate neuroinflammation and slow AD progression[3].

The gut microbiota emerges as another crucial player, with its complex reciprocal relationship with chronic inflammation impacting metabolic diseases like type 2 diabetes and non-alcoholic fatty liver disease. Dysbiosis of the gut microbiome can compromise intestinal barrier function, leading to systemic inflammation through the translocation of bacterial products. Targeting the gut microbiota thus presents a promising therapeutic strategy to improve metabolic health[4].

Acute, exaggerated inflammatory responses, as seen in the "cytokine storm" during severe COVID-19, highlight the pathological consequences of uncontrolled inflammation. This immunological pathogenesis, driven by an excessive host response to SARS-CoV-2, involves key pro-inflammatory cytokines such as IL-6, TNF- α , and IL-1 β , contributing to severe lung damage and multi-organ failure. Therapies often aim to dampen this hyperinflammatory state using corticosteroids, cytokine inhibitors, and immunomodulators[5].

While inflammation often signifies pathology, the body possesses intrinsic mechanisms for its resolution. Specialized Proresolving Mediators (SPMs), including lipoxins, resolvins, protectins, and maresins, actively promote the cessation of inflammation, facilitate efferocytosis of apoptotic cells, and aid tissue repair. Leveraging SPMs or their synthetic analogs holds significant therapeutic potential for managing chronic inflammatory diseases like asthma, arthritis, and cardiovascular disease[6].

Inflammation is also central to autoimmune conditions, exemplified by Systemic Lupus Erythematosus (SLE). Aberrant activation of both innate and adaptive immune responses, including interferon pathways, B cells, and T cells, perpetuates chronic inflammation, leading to multi-organ damage. Identifying and targeting specific inflammatory mediators and cellular pathways is key to developing novel SLE treatments and improving patient quality of life[7].

Furthermore, chronic inflammatory processes are deeply implicated in cancer, contributing to tumor initiation, promotion, progression, and metastasis. Intricate molecular mechanisms, such as the activation of NF-κB and STAT3 signaling pathways, and the recruitment of immune cells within the tumor microenvironment, are crucial. Current and emerging therapeutic strategies aim to target these inflammation-related pathways to enhance cancer treatment outcomes[8].

Adipose tissue inflammation and fibrosis are central drivers in the progression of metabolic dysfunction, including insulin resistance and type 2 diabetes. Cellular changes within adipose tissue, such as adipocyte hypertrophy, immune cell infiltration, and extracellular matrix remodeling, contribute to a chronic inflammatory state. Addressing these processes offers novel therapeutic avenues for preventing and treating obesity-related metabolic disorders[9].

Finally, the link between periodontitis and systemic inflammation underscores how local infections can have broad systemic impacts. Chronic oral infection and inflammation can release bacterial products and pro-inflammatory cytokines into the bloodstream, contributing to a systemic inflammatory burden. This systemic inflammation can impair endothelial function, increasing the risk for cardiovascular diseases and other systemic conditions, suggesting the need for therapeutic strategies that target both oral and systemic inflammation[10].

Description

Chronic inflammation is a fundamental driver across a spectrum of human diseases, extending from metabolic disorders to neurodegeneration and cancer. The intricate interplay between inflammation, oxidative stress, and metabolic conditions such as obesity, diabetes, and cardiovascular diseases highlights critical underlying mechanisms. These include inflammasome activation, mitochondrial dysfunction, and endoplasmic reticulum stress, all of which contribute to disease progression. Current therapeutic strategies encompass a multifaceted approach, involving pharmacological interventions, precise dietary adjustments, and comprehensive lifestyle modifications designed to mitigate these interconnected pathways and ultimately improve patient outcomes[1].

A distinct but related phenomenon, termed "inflammaging," characterizes a chronic, low-grade inflammatory state that becomes more pronounced with advancing age. This persistent inflammation is driven by several factors, including cellular senescence, mitochondrial dysfunction, alterations in the gut microbiota, and a general dysregulation of the immune system. The consequences of inflammaging are significant, contributing to a heightened susceptibility to various chronic diseases and a reduction in overall life expectancy. Developing interventions to modulate this process is a key focus for promoting healthy aging[2]. Adipose tissue inflammation and subsequent fibrosis are also critical in the development and progression of metabolic dysfunction, particularly insulin resistance and type 2 diabetes. Changes within adipose tissue, such as adipocyte hypertrophy and the infiltration of immune cells, coupled with extracellular matrix remodeling, all contribute to maintaining a chronic inflammatory environment. Targeting these specific cellular and tissue-level processes holds considerable promise for novel therapeutic strategies aimed at preventing and treating obesity-related metabolic disorders[9].

Neuroinflammation also represents a significant pathological

process, particularly in conditions like Alzheimer's disease (AD). The central nervous system's immune cells, microglia, exhibit dynamic phenotypes; they can shift between pro-inflammatory (M1) and anti-inflammatory/resolving (M2) states, profoundly affecting amyloid beta clearance, tau pathology, and neuronal survival. Research actively explores therapeutic potential in modulating microglial responses to alleviate neuroinflammation and consequently slow AD progression[3]. Furthermore, the gut microbiota has been identified as a crucial regulator of systemic inflammation. Dysbiosis, an imbalance in the gut microbiome, can disrupt the integrity of the intestinal barrier, allowing for the translocation of bacterial products into the bloodstream, thereby fueling systemic inflammation implicated in metabolic diseases like type 2 diabetes and non-alcoholic fatty liver disease. Manipulating the gut microbiota through various means is being explored as a promising therapeutic strategy to alleviate inflammation and enhance metabolic health[4]. The connection between local inflammation and systemic health is further underscored by research into periodontitis. Chronic infection and inflammation in the oral cavity can release bacterial products and pro-inflammatory cytokines into the bloodstream, significantly contributing to the body's overall inflammatory burden. This systemic inflammation can detrimentally impair endothelial function, elevating the risk for cardiovascular diseases and other systemic conditions, suggesting a comprehensive therapeutic approach might target both oral and systemic inflammatory components[10].

Beyond chronic conditions, acute inflammatory responses can be severely detrimental, as observed in the "cytokine storm" associated with severe COVID-19. This hyperinflammatory state represents an exaggerated host immune response to SARS-CoV-2 infection, characterized by the overproduction of key pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β. Such an uncontrolled response leads to extensive lung damage and multi-organ failure. Therapeutic interventions often involve dampening this acute hyperinflammatory state using agents such as corticosteroids, cytokine inhibitors, and various immunomodulators[5]. In contrast, the body possesses sophisticated mechanisms for inflammation resolution. Specialized Pro-resolving Mediators (SPMs), including lipoxins, resolvins, protectins, and maresins, actively work to promote the cessation of inflammation, facilitate efferocytosis of apoptotic cells, and support tissue repair. Harnessing the therapeutic potential of these SPMs or their synthetic analogs is a significant area of research for managing chronic inflammatory diseases like asthma, arthritis, and cardiovascular disease[6].

Finally, inflammation plays a pivotal role in the pathogenesis of complex diseases like Systemic Lupus Erythematosus (SLE) and cancer. In SLE, aberrant activation of both innate and adap-

tive immune responses, including interferon pathways, B cells, and T cells, perpetuates chronic inflammation, leading to widespread multi-organ damage. Identifying and targeting these specific inflammatory mediators and cellular pathways remains a key focus for developing novel SLE treatments and enhancing patient quality of life[7]. In cancer, chronic inflammatory processes contribute significantly across all stages, from tumor initiation and promotion to progression and metastasis. Intricate molecular mechanisms involve the activation of specific signaling pathways, such as NF-κB and STAT3, and the recruitment of various immune cells that shape the tumor microenvironment. Current and emerging therapeutic strategies are increasingly focused on targeting these inflammation-related pathways to improve overall cancer treatment outcomes, recognizing inflammation as a core component of tumor biology[8].

Conclusion

This collection of scientific literature comprehensively explores the pervasive and multifaceted role of inflammation across numerous human pathologies. It clearly articulates the intricate relationship between chronic inflammation and metabolic disorders, detailing how mechanisms like inflammasome activation, mitochondrial dysfunction, and endoplasmic reticulum stress are central to the progression of conditions such as obesity, diabetes, and cardiovascular diseases. These insights inform current therapeutic strategies, which span pharmacological interventions, dietary modifications, and lifestyle changes, all aimed at mitigating these interconnected pathways.

The data further delves into "inflammaging," identifying it as a chronic, low-grade inflammatory state intrinsically linked with the aging process. It outlines contributing factors like cellular senescence and altered gut microbiota, underscoring its impact on agerelated diseases. Neuroinflammation is highlighted as a critical factor in Alzheimer's disease, with a focus on how dynamic microglial phenotypes influence disease progression. A significant portion of the research emphasizes the gut microbiota's profound influence on systemic inflammation and metabolic health, positing gut modulation as a therapeutic avenue.

Beyond chronic conditions, the papers address acute inflammatory crises, such as the cytokine storm observed in severe COVID-19, detailing its immunological pathogenesis and potential therapeutic dampening strategies. Conversely, the body's natural resolution mechanisms are explored through specialized pro-resolving mediators (SPMs), which actively promote inflammation cessation

and tissue repair, offering new therapeutic paradigms. The pervasive influence of inflammation extends to autoimmune diseases, exemplified by Systemic Lupus Erythematosus, and is critically implicated in the initiation, promotion, and metastasis of cancer, with specific signaling pathways identified as therapeutic targets. Lastly, localized inflammatory processes, such as adipose tissue inflammation driving metabolic dysfunction and periodontitis contributing to systemic inflammation, reinforce the ubiquitous nature of this biological response. Collectively, these studies establish inflammation as a core component of disease etiology and a critical target for diverse therapeutic interventions aimed at improving human health.

References

- Yu-Hao L, Xiao-Qing L, Jing-Jing X, Yi-Lin W, Jun S et al. (2023) Targeting inflammation and oxidative stress in metabolic disorders: Recent advances and therapeutic strategies. J Inflamm Res 16:2513-2533.
- Francesca F, Matteo B, Marco GN, Giovanni D, Roberto C et al. (2022) Inflammaging: a multifaceted process that drives detrimental age-related outcomes. Ageing Res Rev 79:101662.
- Shiyuan M, Hongxia F, Tingting W, Ruifang L, Wenyan S et al. (2023) Neuroinflammation in Alzheimer's disease: The emerging role of microglial phenotypes. J Neuroinflammation 20:186.

- 4. Lingyu H, Jing L, Chenghao L, Zhaofeng Z, Wei-Qi S et al. (2021) The interplay between gut microbiota, inflammation, and metabolic diseases. Front Microbiol 12:709322.
- 5. Ying X, Li L, Li-Fang Z, Li-Ping X, Yu-Feng Z et al. (2020) COVID-19-associated cytokine storm: Pathogenesis and therapeutic strategies. Cell Biosci 10:111.
- Yu-Hua W, Cheng-Hong M, Jin-Shan Z, Rong W, Rui-Lei L et al. (2024) Specialized pro-resolving mediators in chronic inflammatory diseases: Mechanisms and therapeutic potential. Biomed Pharmacother 171:116035.
- Peng-Fei Z, Jing-Jing L, Qing-Qing W, Min-Hao L, Li-Juan H et al. (2022) The role of inflammation in systemic lupus erythematosus: from pathogenesis to therapeutic targets. Front Immunol 13:994269.
- 8. Meng-Ting L, Ruo-Dan L, Xiao-Yun W, Jie Y, Lin L et al. (2023) Inflammation and cancer: From mechanisms to therapeutic implications. Cancer Lett 554:215981.
- Shiyong L, Yujie L, Yu-Hao L, Yun-Tao W, Jin-Peng L et al. (2021) Adipose tissue inflammation and fibrosis: Central drivers of metabolic dysfunction. Front Pharmacol 12:746672.
- Yu-Hao L, Xiao-Qing L, Jing-Jing X, Yi-Lin W, Jun S et al. (2019) Periodontitis and systemic inflammation: The potential role of endothelial dysfunction and its therapeutic implications. J Inflamm Res 12:317-327.