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Micro- and nano-particle charge is one of the main factors 
determining the physical stability of both emulsions and suspensions 
and can be quantified by measuring their so called “zeta potential”. 
When all the particles have a large either negative or positive zeta 
potential value, they will repel each other and, as a consequence, the 
suspension becomes stable. By contrast, whether the zeta potential is 
close to 0 mV, the tendency for flocculation increases. Zeta potential 
is, however, a feature of the particle in its environment and not of 
the particle itself. In fact, its net charge in solution affects the ion 
distribution surrounding the particle, thus resulting in an increase in 
the concentration of counter-ions. The region over which this influence 
extends is called “electrical double layer” (EDL) and EDL splits into 
two regions (Figure 1). In the first, called “stern layer”, the ions are of 
opposite charge with respect to the particles and, being strongly bound 
to them, move with them. The second layer, conversely, is a “diffuse 
layer” where the ions are less strongly attached and, inside it, there is 
a boundary line between the ions moving with the particles and the 
not moving ones. This region, called “slipping plane”, is known as the 
surface of hydrodynamic shear and the potential existing in the slipping 
plane is called zeta potential [1]. 

Electrophoresis is the most widely used technique for measuring 
zeta potential. By directly analysing the electrophoretic mobility of a 
particle, the zeta potential may then be determined using the “Henry 
equation”: 
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where UE is the electrophoretic mobility, ε is the dielectric constant, 
z is the zeta potential, η is the viscosity and f(Ka) is Henry’s function. For 
measuring zeta potential in aqueous solutions of moderate electrolyte 
concentration, a Henry’s function value of 1.5 is used (Smoluchowski 
approximation) whereas, if zeta potential is measured in a non-polar 
solvent, f(Ka) is set to 1.0 (Huckel approximation).

Zeta potential is attracting an increasing interest for the 

characterization of electrochemical surface properties of both micro- 
and nano-particles being a key parameter for a number of applications, 
including characterization of biomedical polymers, electrokinetic 
transport of particles or blood cells, biocompatibility tests for 
pharmaceuticals and medical devices, membrane separation, protein 
purification, mineral processing, water treatment, characterization of 
clothing material properties in the textile industry [2,3].

The use of biodegradable and/or edible films was proposed in the 
late sixties, originally to extend the shelf life of various fresh, frozen and 
manufactured food items and to improve their quality [4]. Many bio-
macromolecules including proteins and carbohydrates have been thus 
far used, blended or not, as edible films and coatings [4-7]. Protein- 
and polysaccharide-based films show good tensile features, whereas 
lipid-based films have proved to be good water vapour barriers [8-10]. 
The formation of biopolymer supra-molecular structures induced by 
electrostatic interactions is related to the nature of raw materials, as well 
as to other factors such as concentration of the components, their mix 
ratio, pH, temperature and ionic strength [11-13]. In addition, Porta et 
al. [14,15] studied the effect of transglutaminase (TGase), an enzyme 
able to form protein inter- and/or intra-molecular crosslinks, on the 
mechanical and barrier properties of protein-based films showing that 
the enzyme is a very useful tool to produce innovative bio-plastics from 
renewable biomass sources. Giosafatto et al. [16] characterized citrus 
pectin (PEC) edible films containing TGase-modified phaseolin, and 
reported that the mechanical, as well as barrier properties to CO2, O2 
and water vapor of the latter were comparable to the ones of commercial 
plastics. More recently, Porta et al. [17] investigated the microstructure 
and some features of bitter vetch (Vicia ervilia, BV) seed protein films 
reinforced by microbial TGase. BV, an annual grain legume crop thus 
far widely cultivated only for forage because of its high nutritional value, 
shows several favourable characteristics, such as having high yields 
and being a cheap and abundant protein source [18,19]. Arabestani et 
al. [20] found that the very low gas permeability, in addition to good 
mechanical properties, of BV protein films prepared in the presence 
of the enzyme conferred to these new bio-materials potential practical 
applications not only as edible coatings in food packaging but also as 
biodegradable containers. 

On the other hand, polysaccharides as starch, alginate, cellulose, 
chitosan, carrageenan, PEC, or their derivatives, impart hardness, 
crispness, compactness, thickening quality, viscosity, adhesiveness, 
and gel forming ability to a variety of films. These films, because of 
the make up of the polymer chains, exhibit excellent gas permeability 

Figure 1: Micro- or nano-particle electrical double layer.
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properties, resulting in desirable modified atmospheres that enhance 
the shelf life of the products without creating anaerobic conditions [21]. 
Additionally, polysaccharide films and coatings can be used to extend 
the shelf life of muscle foods by preventing dehydration, oxidative 
rancidity and surface browning, even though their hydrophilic nature 
makes them poor barriers for water vapour [22]. 

Among the different polysaccharides, PEC appears to be suitable 
for low moisture foods [21]. PEC, mainly extracted from citrus peel 
and apple pomace, is a heterogeneous group of acidic macromolecules 
well known for their long and safe use in the food industry as a 
thickening and stabilizer agents. Because of its gelling characteristics, 
bio-adhesivity, biocompatibility and non-toxicity properties, PEC 
is also a promising biopolymer as a drug delivery vehicle. In fact, it 
has been used in mucoadhesive systems to increase the retention time 
of the dosage form in the gastrointestinal tract, thus enhancing drug 
absorption after its oral administration [23,24]. The ability of PEC to 
adhere to mucous membranes seems to be dependent on the different 
type of polysaccharide employed [25,26]. In particular, the degree of 
esterification or amidation of the galacturonic acid residues inside the 
macromolecule is often used to characterize PEC and describes the 
different properties of the various PEC preparations [27].

All the above literature indicates that the variations of the film 
physical properties are closely related to polyelectrolyte nature of 
the biopolymer component(s) and to their capacity to influence the 
microstructural network by their ionisable groups. The charge on the 
polymer chains is related to pH and ionic strength of the solution 
and could affect the polyelectrolyte aggregation with formation of 
nano-complexes. Therefore, a careful analysis of this relationships 
needs experimental details that may be provided by zeta potential 
measurements carried out on the film forming (FF) mixtures used to 
prepare the differently tailored biodegradable/edible films. Moreover, 
the analysis of the various factors able to influence the zeta potential 
value of each FF solution/suspension could be useful to render 
“stable” the latter. It is worthy to note that the mixing of the different 
components of a specific FF solution/suspension -as well as the pH, the 
ionic strength, the polyelectrolyte ratio, or even the method of adding of 
each component and the speed of mixing- may markedly influence the 
zeta potential and the size of the obtained micro- or nano-complexes.

To this aim, the zeta potential of FF solutions of pure polysaccharide 
(PEC) and protein (phaseolin), as well as of a protein mixture (BV seed 
protein concentrate, BVPC), was measured at different pH values by 
titration from pH 8.0 to pH 2.0 using the Zetasizer nano-ZSP (Malvern, 
Worcestershire, UK). The results reported in Table 1 showed that 
PEC negative zeta potential progressively decreased from -37.50 mV, 
recorded at pH 8.0, to -6.84 mV recorded at pH 2.0, indicating that 
PEC FF solution starts to move from a stable to a more unstable form 
at about pH 5.0. Nguyen et al. [28] found that the adsorption of PEC 
onto positive liposomes yielded a reproducible increase in particle size 

and a shift of the zeta potential from positive to negative side, whereas 
PEC adsorption onto negative liposomes did not render any significant 
changes probably due to electrostatic repulsion. Furthermore, zeta 
potential is commonly used also to investigate protein solution/
suspension stability [29]. Yin et al. [30] recently studied the surface 
charge and conformational properties of phaseolin, the major globulin 
occurring in red kidney beans (Phaseolus vulgaris L) [31], and reported 
that the zeta potential of phaseolin, measured in the absence of NaCl, 
increased from -44.0 mV at pH 9.4 to 27.9 mV at pH 3.0, the protein 
isoelectric point occurring at pH 4.2. In addition, zeta potential 
decrease was observed by increasing NaCl concentration from 0 
to 200 mM at pH below the isoelectric point. Table 1 summarizes 
the results of our recent experiments concerning the changes in the 
zeta potential values of phaseolin when the protein was dissolved in 
125 mM NaCl at 25°C as a function of pH. Also in this case the zeta 
potential was observed to increase (from -13.80 mV at pH 8.0 to 3.48 
mV at pH 2.0). Finally, Table 1 reports also the changes in the zeta 
potential values measured with the mixture of proteins extracted from 
BV seeds. The detected zeta potential of BVPC was found to increase 
from -17.00 mV at pH 8.0 to 23.50 mV at pH 2.0, indicating that the 
electrostatic repulsion pattern may be gradually modified as a result 
of the gradual deprotonation of carboxyl groups and protonation of 
the amino groups of each BV protein composing the mixture. Further 
preliminary experiments (unpublished data) allowed to correlate film 
mechanical properties with the increase of the negative zeta potential 
of BV protein/PEC nano-complexes occurring in the FF solution. Our 
findings are in agreement with previous studies [32,33] explaining the 
observed increase of flexibility of both polysaccharide/essential oil and 
whey protein/gelatin composite films by the influence of the nano-
emulsion/solution electrical charge. In this respect, it was suggested that 
the repulsive forces among macromolecules of the same charge could 
increase the distance between the polymer chains and, consequently, 
determine a plasticizing effect in the case of charged polymeric film 
structures.

In conclusion, zeta potential measurement is proposed as an useful 
tool for assessing biopolymer interactions in each specific FF solution/
suspension, before casting, during the preparation of bio-based edible 
films. When zeta potential value results either less negative than -10mV 
or lower than 10mV, the particle solution/suspension is extremely 
unstable and, in turn, the physical properties of the derived edible film 
would be hard to tailor for specific applications.
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