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Abstract
Introduction: The COVID-19 patients in the convalescent stage noticeably have pulmonary diffusing capacity impairment (PDCI). 

The pulmonary diffusing capacity is an important indicator of the COVID-19 survivors’ prognosis of pulmonary function, but the current 
studies focusing on prediction of the pulmonary diffusing capacity of these people are limited. The aim of this study was to develop and 
validate a machine learning (ML) model for predicting PDCI in the COVID-19 patients using routinely available clinical data, thus assisting 
the clinical diagnosis.

Methods: The data used in this study were collected from a follow-up study from August to September 2021 of 221 hospitalized 
COVID-19 survivors 18 months after discharge from Wuhan, including the demographic characteristics and clinical examination. The data 
were randomly split into a training (80%) data set and a validation (20%) data set. Six popular machine learning models were developed 
to predict the pulmonary diffusing capacity of COVID-19 patients in the recovery stage. The performance indicators of the model included 
area under the curve (AUC), Accuracy, Recall, Precision and F1. The model with the optimum performance was defined as the optimal 
model, which was further used in the interpretability analysis. The MAHAKIL method was utilized to balance the data and optimize the 
balance of sample distribution, while the RFECV method for feature selection was utilized to select combined features more favorable to 
machine learning.

Results: A total of 221 COVID-19 survivors discharged from hospitals in Wuhan were enrolled in this study. Of these participants, 117 
(52.94%) were female, with a median age of 58.2 years (Standard Deviation (SD)=12). After feature selection, 31 of the 37 clinical factors 
were ultimately chosen for use in the model construction. Among the six ML models tested, the best performance was accomplished in the 
XGBoost model, with an AUC of 0.755 and an accuracy of 78.01% after experimental verification. The SHAPELY Additive explanations 
(SHAP) summary analysis exhibited that Hemoglobin (Hb), Maximal Voluntary Ventilation (MVV), severity of illness, Platelet (PLT), Uric 
Acid (UA) and Blood Urea Nitrogen (BUN) were the top six most important factors affecting the XGBoost model decision-making.

Conclusion: The XGBoost model reported here showed good prognostic prediction ability for Carbon Monoxide Diffusing Capacity 
of the lungs (DLCO) of COVID-19 survivors during the recovery period. Of the features selected, Hb and MVV contributed most to the 
outcome prediction of DLCO of the convalescent COVID-19 survivors.
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Introduction
As of October 20, 2022, the global pandemic caused by Corona 

Virus Disease 2019 (COVID-19) has infected more than 626 million 
people and claimed 6.57 million lives. Among the COVID-19 
survivors, many have shown disastrous effects on multiple organs 
and systems [1], but the lung is the organ most susceptible to severe 
damage from COVID-19 [2]. The convalescent COVID-19 patients 
have demonstrated particularly pronounced PDCI. Our previous study 
has found that the incidence of DLCO impairment of the COVID-19 
patients reached 57.92% in 18 months after discharge [3]. Studies 
show that pulmonary diffusing capacity of the COVID-19 patients is 
also significantly impaired in the 1-24 month recovery phase. Studies 
also suggest impaired gas-blood exchange in patients discharged after 
admission for COVID-19 [1,4-7], and low DLCO may be the result 
of interstitial abnormalities or pulmonary vascular abnormalities 
caused by COVID-19 [8-11]. Therefore, there is an urgent need for 
a prognostic assessment and early warning system for COVID-19, 
especially for a model to predict PDCI of the convalescent patients. To 
solve this problem, establishment of an early warning model to estimate 
the DLCO of patients is probably an alternative. The current prediction 
models for COVID-19 are mainly utilized to identify the high-risk 
groups of the general population [12], diagnose COVID-19 patients 
[13], and predict the progression of disease severity and mortality 
[14,15]. However, the prediction models for PDCI of COVID-19 
patients are still in deficiency. 

Machine learning analysis is based on various data mining 
algorithms of different data types and formats to characterize the 
features of data in a more scientific way and gain better insight into data 
trends and recognized values [16]. The interpretability of ML is essential 
to help enhance the trust of healthcare professionals because it shows 
sufficient reasons to make predictions and the way how parameters 
contribute to the model [17]. However, most ML studies worked hard 
to improve performance by increasing the model complexity, leading 
to uncertainties in the way how ML operates and makes decisions [18-
20]. To improve interpretability of the ML models, this study adopted 
the most popular feature importance estimation in the explainabilty 
researches [21,22]. We tried to rank the features according to their 
importance and used the TreeSHAP method proposed by Lundberg et 
al. to analyze the clinical features [23].
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Accordingly, the aim of this investigation was to develop and 
validate an interpretable ML model based on clinical variables to assess 
the risk of PDCI of the COVID-19 patients in recovery.

Methodology

Study design and data set

We conducted from August to September 2021 a follow-up study of 
COVID-19 survivors 18 months after discharge from Hubei Provincial 
Hospital of Integrated Traditional Chinese and Western Medicine. 
A total of 221 survivors were contacted according to their time of 
discharge. Clinical data related to survivors, including demographic 
characteristics (age, sex and Body Mass Index (BMI)) and clinical 
examination indicators (lung function, chest HRCT, antibody titers and 
various biochemical indicators), were collected by trained physicians. 
This study was reviewed and approved by the Ethics Committee of 
Hubei Provincial Hospital of Integrated Traditional Chinese and 
Western Medicine (2,020,009). All participants had provided their 
written or verbal consents prior to the study.

The principal procedures of this study were performed in three 
main steps. Firstly, we used six popular machine learning models to 
predict pulmonary diffusing capacity of patients recovering from 
COVID-19. Secondly, we tested the performance of the six ML models, 
selected indicators including AUC, Accuracy, Recall, Precision and F1, 
and defined the model with the optimum performance as the optimal 
model. Finally, we used the MAHAKIL method for data balance 
processing to optimize the balance of sample distribution, while the 
RFECV method for feature selection, which could choose combined 
features conducive to machine learning. The overall workflow of this 
study is shown in Figure 1.

Patients and outcomes

The criteria for inclusion of survivors in the study were determined 
in accordance with the protocols for COVID-19 management of the 
World Health Organization (WHO) and National Health Commission 
of the People’s Republic of China [24,25].

The severity of illness of COVID-19 are measured as follows:

• Mild cases: without symptoms and signs of severe and critical 
infection;

• Mild cases: without symptoms and signs of severe and critical 
infection;

Severe case:

• breathing difficulties, respiratory rate ≥ 30 bpm;

• SpO2 ≤ 93% at rest;

• PaO2/FiO2 ratio ≤ 300 mmHg.

Critical cases:

• Respiratory failure requiring mechanical ventilation;

• Shock;

• Multi-organs failure requiring intensive care.

The primary endpoint of our study was the Area Under the Receiver 
Operating Characteristic curve (AUROC) of the model’s prediction. 
The secondary endpoints of our study were Accuracy, Recall, Precision 
and F1 score of the model’s prediction.

Data collection

Clinical data on COVID-19 survivors include demographics, 
medical history, laboratory tests, severity of illness scoring system and 
outcomes. Demographic characteristics extracted covered gender, age, 
height and body weight. Then, we collected data on comorbidities, 
including heart failure, anemia and Chronic Obstructive Pulmonary 
Disease (COPD). The laboratory tests abstracted include White Blood 
Cells (WBC), Hb, PLT, N%, L%, LY#, IgM, IgG, proBNP, Alanine 
Transaminase (ALT), Aspartate Aminotransferase (AST), Alb, BUN, 
Cr, UA, HbA1c, Normal unilateral and bilateral score, Forced Vital 
Capacity (FVC), forced expiratory volume in one second (FEV1), 
FEV1/FVC, MVV, DLCO, tubercle, Ground-Glass Opacity (GGO), 
fibrosis, etc. The severity of illness is scaled from 1 to 4.

Feature selection and data preprocessing

High dimensional data analysis modeling is a challenge for data 
mining researchers. Feature selection technology provides an effective 
method to solve this problem by removing irrelevant and redundant 
data, which can reduce the computation time, improve the learning 
accuracy and help to better understand the learning model [17]. 
Cai et al. analyzed and compared some state-of-art feature selection 
methods on two high-dimensional gene expression data sets through 
experiments [21], which found that Recursive Feature Elimination 
(RFE) could achieve higher accuracy than other feature selection 
methods. In this regard, we chose RFECV, a Cross Validation version 
of RFE. The purpose of adding Cross Validation is to select the best 
number of features, which often requires manual trial and error to 
obtain the best number of features in studies using RFE. In our study, 
the RFECV method was used to cyclically remove medical features 
that were detrimental to the ability of the model to learn to predict the 
pulmonary diffusing capacity until the assembled features enabled the 
model to perform optimally. After feature selection, 31 of the 37 clinical 
factors were ultimately chosen for model construction.

Model development and validation

The data were randomly split into a training data set (80%) and 
a validation data set (20%). Firstly, up-sampling by the MAHAKIL 
method was utilized to balance the number of samples of different 

Figure 1: Flow diagram of model design.



Volume 9 • Issue S5 • 1000005J Infect Dis Ther, an open access journal
ISSN: 2332-0877

Citation: Fu-qiang MA, Cong HE, Yang H, Zuo-wei HU, He-rong Mao, et al. (2022) Interpretable Machine-Learning Model for Prediction of Convalescent COVID-19 
Patients with Pulmonary Diffusing Capacity Impairment. J Infect Dis Ther.S5:005.

Page 3 of 7

classes in the training set. Secondly, the RFECV method was utilized to 
select the optimal combination of features. Then, the selected features 
from the balanced training set were input into the machine learning 
model for training and modeling, and the grid-search method was 
utilized to ensure the validity of the combination of parameters during 
training. Finally, the trained ML model was utilized to predict and 
evaluate the data results of the test set, and the features in the test set 
were also processed as the optimal combination of features. In addition, 
we integrated the overall data, ranked the importance of features by 
taking XGBoost as the base model and using the TreeExplainer method, 
and combined with the calculating principle of the SHAP interaction 
values to further explain the reasons why these features were considered 
significant. 

The XGBoost model ROC_AUC changes corresponding to the 
number of features are shown in Figure 2. After feature selection via 
the RFECV method, 31 were selected as the optimal combined features.

Model explainability

Opening the black box of ML is of great importance to improve 
the compliance and transparency of the ML decision-making process 
of healthcare workers [26]. Therefore, we took XGBoost with the best 
performance in AUC evaluation index as the base model, the optimal 
combined features after feature selection and labels as the input, and 
use the Tree Explainer method to sort the SHAP values of features. The 
SHAP value summary diagram of medical characteristics is shown in 
Figure 3.

Statistical analysis

The count data were described with the number of cases (%), and 
Pearson chi-square test was utilized for comparison between groups. 
Measurement data conforming to the normal distribution were 
expressed as the median and interquartile range (M (P25, P75)) by 
t-test or ANOVA, while the Mann-Whitney U test was utilized between 
groups. After feature selection and data preprocessing, we developed 
six popular machine learning models to predict PDCI of patients 
recovering from COVID-19. The overall performance of each model 
was evaluated by AC, Accuracy, Precision, Recall and F1 measurements. 
Ultimately, the model was explained by the TreeExplainer method.

SPSS 25.0 (IBM, Armonk, New York, USA) was used for statistical 
analysis. All statistical tests were two-sided, and P<0.05 was considered 
statistically significant.

Results

Clinical characteristics

A total of 221 COVID-19 survivors participated in the study (Mild 
cases, n=93; Moderate cases, n=58; Severe cases, n=54; Critical cases, 
n=16). The median age of the patients in this study was 58.2 [Standard 
Deviation (SD)=12]. Among them, 104 survivors (47.06%) were male 
and 117 (52.94%) were female, with an average BMI of 24.62 [Standard 
Deviation (SD)=3.5]. The incidence of PDCI in COVID-19 survivors 
was 57.92% as shown in Table 1.

Model development and validation

After feature selection, we utilized 31 alternative factors for model 
construction, and among the six ML models tested by the team. 
Compared with GBDT (A.C. 0.67), KNN (A.C. 0.63), RandomForest 
(A.C. 0.70) and SVC (A.C. 0.70), MLP (A.C. 0.69), XGBoost (A.C. 0.75) 
has better DLCO predicting ability for COVID-19 survivors. Table 2 
shows that XGBoost has the best performance in AUC, Accuracy, 
Recall, Precision and F1. After experimental verification, the model 
has an AUC of 0.755 and an Accuracy of 78.01%. The SHAP summary 
analysis showed that Hb, MVV, severity of illness, PLT, UA and BUN 
were the top six most important factors affecting the XGBoost model 

Figure 2: Change of ROC_AUC of the XGBoost model and number of features.

Figure 3: SHAP value summary diagram of medical characteristics.
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 All patients M (P25,P75) Patients with impaired 
DLCO

Patients with normal 
DLCO t or x2 P-value

Age 61(51,66) 62(51,67) 59(47.5,66.0) -0.979 0.328
Gender
Male (%) 104 42 62 24.114 0
Female (%) 117 86 31   
Severity
mild 93 43 50 19.476 0
moderate 58 31 27   
severe 54 39 15   
critical 16 15 1   
WBC 5.640(4.810,6.530) 5.650(4.923,6.500) 5.695(4.810,6.450) -0.366 0.714
Hb 135.000(127.000,145.000) 131.00(123.250,139.750) 139(132,151) -5.2 0
PLT 184.000(158.000,219.000) 198.500(159.250,229.750) 179(156,209.750) -2.545 0.011
N% 56.140(50.540,61.300) 56.600(52.685,62.075) 55.550(50.425,60.300) -1.556 0.12
L% 32.4 ± 6.49  32.290 ± 6.415 32.618 ± 6.643 0.369 0.712
LY# 1.790(1.500,2.120) 1.790(1.493,2.063) 1.785(1.500,2.173) -0.035 0.972
IgM 0.540(0.220,1.470) 0.500(0.220,1.518) 0.515(0.233,1.148) -0.142 0.887
IgG 138.340(67.640,210.930) 146.100(73.298,217.485) 135.125(58.258,207.860) -0.859 0.39
proBNP 105.300(81.250,169.200) 106.400(81.250,172.200) 103.340(80.633,166.075) -0.213 0.831
ALT 13.000(10.000,21.000) 12.000(9.000,20.000) 13.000(10.000,21.000) -1.774 0.081
AST 21.000(17.000,25.000) 20.500(17.00,750) 22.000(17.000,25.000) -1.166 0.868
Alb 44.600(43.300,46.000) 44.500(43.425,45.875) 44.900(43.425,46.375) -1.282 0.2
BUN 5.430(4.600,6.340) 5.525(4.760,6.345) 5.275(4.228,6.525) -1.218 0.223
Cr 66.800(56.400,80.000) 63.950(54.100,78.650) 71.050(59.400,82.475) -2.611 0.009
UA 343.7(289.600,409.000) 339.450(287.075,400.475) 368.450(289.625,416.800) -1.697 0.09
HbA1c 5.500(5.200,5.900) 5.600(5.300,6.000) 5.400(5.100,5.900) -2.199 0.028
FVC 100.28 ± 16.33 98.055 ± 16.615 103.520 ± 15.468 2.476 0.014
FEV1 101.47 ± 17.62 99.495 ± 18.569 104.361 ± 18.928 2.033 0.043
FEV1/FVC 83.800(79.000,89.320) 84.500(79.300,89.468) 82.650(78.100,89.315) -0.971 0.332
MVV 93.52 ± 24.8 88.013 ± 25.142 101.278 ± 22.311 4.032 0
BMI kg•m-2 24.78(22.35,26.81) 24.140(21.915,26.583) 25.775(22.965,27.033) -2.078 0.038

CT SCORE 2(1, 3) 2.000(1.000,4.000) 2.000(0.000,3.000) -2.439 0.015

Table 1: Clinical characteristics of survivors with impaired and normal DLCO.

Classifier AUC Accuracy Recall Precision F1
GBDT 0.6787 0.7044 0.6787 0.6938 0.6764
KNN 0.6392 0.6487 0.6392 0.6378 0.6309
RandomForest 0.7011 0.7376 0.7011 0.7434 0.7009
SVC 0.7085 0.7358 0.7085 0.7224 0.7104
MLP 0.6912 0.7066 0.6912 0.6937 0.6872
XGBoost 0.755 0.7801 0.755 0.7755 0.7572

Table 2: Experimental results of different classifiers.

patient and is accumulated vertically to depict density. Colors represent 
high and low values for each element, with dark colors indicating higher 
values and light colors lower values. The X-axis of the graph represents 
the SHAP value. A positive SHAP value indicates that it has a positive 
contribution to the prediction model and a high probability of PDCI 
occurrence, and vice versa (Figure 4).

Finally, we plotted the XGBoost decision-making process against 
the SHAP values, as shown in Figure 5. The gray vertical line in the 
middle of the decision graph marks the base value of the model, and the 
colored line is the prediction, indicating whether each feature moves 
the output value to a value higher or lower than the average prediction. 
The eigenvalues next to the prediction line can be taken as the reference. 
Starting at the bottom of the graph, the prediction line shows how the 
SHAP value accumulates from the base value to the model final score 
at the top of the graph. The blue broken line is the decision process 

decision-making.

Model explainability

Figure 3 shows the SHAP summary diagram, which ranks the 
factors according to their importance to the predicted incidence in the 
validation cohort. The SHAP summary analysis showed that Hb, MVV, 
level, PLT, UA and BUN were the top six most pivotal factors affecting 
the XGBoost model decision. Figure 3 also shows the correlation 
between the six factors and the prediction of PDCI occurred in the 
COVID-19 survivors. The SHAP values above zero for these six 
characteristics indicate an increased risk of PDCI. Hb and MVV were 
negatively correlated with DLCO, while severity of illness, PLT, UA and 
BUN were positively correlated.

The SHAP values in the validation set were uitlized to evaluate the 
feature importance of the XGBoost classifier. Each dot represents 1 
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decision-making. Overall, our study demonstrated that it is possible to 
predict the incidence of PDCI in COVID-19 patients using routinely 
collected clinical data.

As the COVID-19 pandemic continues to be rampant in our world 
and the number of patients recovering from the disease increases, 
studies have found that shortness of breath and dyspnea are the most 
common sequelae among those who have survived hospitalization 
with COVID-19 due to the presence of PDCI [7]. Therefore, DLCO-
based pulmonary function testing can be regarded as a useful tool 
to differentiate those at risk of pulmonary sequelae [27]. However, 
previous studies on COVID-19 have focused on risk factor analysis and 

of predicting a normal object, and the red broken line is the decision 
process of predicting an exception object.

Discussion
The aim of this ML-based modeling study was to develop a valid, 

stable and interpretable model for predicting the incidence of PDCI 
in COVID-19 survivors in the recovery phase. The results manifested 
that the XGBoost model was the most reliable and accurate among all 
the tested models, with an AUC of 0.755 and an Accuracy of 78.01%. 
We also found that Hb, MVV, severity of illness, PLT, UA and BUN 
were the top six most important factors influencing the XGBoost model 

Figure 4: Top 6 clinical features in SHAP values of XGBoost.

Figure 5: Output decision chain of the XGBoost model.
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mortality prediction of the mild-to-moderate cases [28,29], without 
a prediction model for PDCI in COVID-19 survivors. Therefore, it is 
necessary to develop and validate the risk-level outcome prediction 
models to evaluate the pulmonary function status of COVID-19 
survivors.

Apart from using a machine learning model to predict the 
pulmonary diffusing capacity in patients recovering from COVID-19, 
this study further applied the model to interpretability analysis. 
Because the internal logic and operating mechanisms of ML models are 
concealed from users, this uncertainty poses challenges for healthcare 
workers in applying the machine learning systems in reality. In this 
study, we used the interpretation method based on the importance of 
the SHAP value features to help medical researchers understand the 
decision-making criteria of ML models [30-32], enhance the credibility 
of medical professionals in ML, and coordinate the contradictions 
or inconsistencies between the knowledge structural elements of 
machines and human beings with prior knowledge. We adopted the 
TreeSHAP method [6], which is an effective evaluative method for 
the importance of tree model features based on the SHAPELY value 
of classical game theory. The SHAP summary analysis showed the six 
most important factors of the XGBoost model. Among them, MVV 
is the most important indicator of lung reserve function, which is 
closely related to activity endurance. The most serious sequelae of the 
COVID-19 patients are shortness of breath and dyspnea in the wake of 
activities, and the significantly decreased pulmonary function reserve 
[33]. This study confirmed that MVV was positively correlated with the 
pulmonary diffusing function in COVID-19 patients. The MVV value 
of COVID-19 patients with normal diffusing function was significantly 
higher than that of patients with impaired pulmonary diffusing 
function, which reveals the importance of strengthening pulmonary 
rehabilitation exercises and increasing pulmonary function reserve in 
COVID-19 patients during rehabilitation. Studies have found that Hb, 
a parameter closely related to organ perfusion, alveolar ventilation and 
blood flow ratio, has greatly contributed to the prediction of pulmonary 
function outcomes in patients with COVID-19 after recovery. In this 
study, after the correction of Hb, Hb of COVID-19 patients with 
decreased pulmonary diffusing function was normal low value or 
anemia, indicating that there is a long-term imbalance of pulmonary 
perfusion and ventilation ratio in COVID-19 patients, to which due 
attention should be paid.

In addition, PLT and severity of illness were negatively correlated 
with pulmonary diffusing function. The more severe the disease 
was, the higher the normal value of PLT was, and vice versa. Studies 
have confirmed that PLT activation is involved in the formation of 
inflammatory micro-vascular thrombosis in COVID-19 patients and is 
closely related to respiratory failure in COVID-19 patients [10,34-38]. 
However, one and a half years later, our study found that PLT was still 
closely related to PDCI of COVID-19 survivors. Consistent with our 
previous study [3], these observations suggest that clinically obtained 
MVV, PLT, Hb and severity of illness are the key factors for using the 
XGBoost model to predict pulmonary function status in COVID-19 
survivors. Besides, compared with the indicators directly affecting 
pulmonary function, the SHAP pooled analysis exhibited that the 
increased UA and BUN may be associated with an increased risk of the 
retrogressive pulmonary diffusing capacity of the COVID-19 patients.

Currently, the combination of high-frequency biological data 
streams and artificial intelligence offers a promising application for 
predicting the diffusing capacity of lungs, which could allow early 
identification of pulmonary function recovery in patients with 

COVID-19 [39-41]. However, there are still some limitations in this 
study. First, the modeling and retrospective design of this study do 
not allow causal inferences to be drawn about the association between 
variables and the ability of the pulmonary diffusing capacity. Second, 
the predictive efficiency of the current models may be affected by racial 
and ethnic differences. Moreover, it is difficult to obtain more relevant 
data due to the privacy of COVID-19 patients, leading to a lack of 
proper external validation of our prediction model, which will affect the 
credibility of the XGBoost model. Finally, although the findings showed 
that the model had learned the medical rules in the data, the expansion 
of data is an urgent ness in the future to improve the performance of 
the model.

Conclusion
The XGBoost model showed desired predictive ability for PDCI of 

COVID-19 survivors during recovery. Among the selected features, Hb 
and MVV contributed the most to the prediction of PDCI outcomes in 
survivors recovering from COVID-19. The significance of the SHAP 
values could help to improve the interpretation of ML model results.
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