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ABSTRACT

 The central stress circuitry represents a neural network that includes hypothalamic-pituitary-adrenocortical axis, sympathoadrenal system and limbic 
areas (medial prefrontal cortex, hippocampus and amygdala). Hypothalamic-pituitary-adrenocortical axis and sympathoadrenal system dysregulation are the 
important features of the pathogenesis of stress. The following review summarizes the relationship of hypothalamic-pituitary-adrenocortical axis, sympathoadrenal 
system and limbic structures as well as control of glucocorticoid and norepinephrine/epinephrine release. Medial prefrontal cortex projects nerve input to the 
amygdala and hypothalamus. Amygdala has stimulatory while hippocampus has inhibitory control over hypothalamic-pituitary-adrenocortical axis. Paraventricular 
nucleus of hypothalamus further projects to the pituitary gland. The final outputs of this central stress circuit are endocrine system and emotional motor system. These 
result in the release of corticosterone and norepinephrine/epinephrine through hypothalamic-pituitary-adrenocortical axis and sympathoadrenal system, 
respectively.  
Keywords: hypothalamic-pituitary-adrenocortical axis, glucocorticoid, sympathoadrenal system. 
 
INTRODUCTION 

The central stress circuitry represents a neural network that is 

consisting of integrated brain structures which generate the 

stress responses. The central stress circuitry includes 

hypothalamic-pituitary-adrenocortical (HPA) axis, 

sympathoadrenal system (SAS) and limbic areas. Limbic area 

comprises mainly of medial prefrontal cortex, hippocampus 

and amygdala. SAS and HPA axis are the two distinct but 

interrelated systems, which are involved in the maintenance 

of homeostasis in stress (1). Stress stimuli activate the HPA 

axis and SAS. Briefly, stimulation of SAS in stress results in 

the release of norepinephrine from the sympathetic nerve 

terminals and adrenal medulla (2). On the other hand, 

stimulation of HPA axis in stress results in the release of 

glucocorticoids from the adrenal cortex (3).  

 

Sympathoadrenal system (SAS) 

SAS comprises of locus coeruleus, sympathetic nervous system 

(SNS) and norepinephrine. Locus coeruleus is a nucleus in the 

pons of the brainstem and involved in the norepinephrine 

synthesis inside the brain.  The sympathetic nerves can be 

considered as neurochemical transducer that converts 

electrical impulses in the nervous system to chemical 

messenger.  Chemical messenger released in turn produce 

physiological response by receptors in the innervated tissue. 

Activation of SAS results in increased release of 

norepinephrine and neuropeptide-Y from sympathetic nerve 

terminals while norepinephrine, epinephrine and 

dihydroxyphenylalanine from the adrenal medulla. 

Norepinephrine is accountable for fight-or-flight responses 

(2).  
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Hypothalamic–pituitary–adrenal (HPA) axis  

The HPA axis is controlled by a discrete set of neurons in the 

medial parvocellular division of the paraventricular nucleus 

(PVN) of hypothalamus. These neurons synthesize and release 

the corticotrophin releasing hormone (CRH) with arginine 

vasopressin (AVP).  CRH and AVP pass through the 

hypophysial portal veins to access anterior pituitary 

corticotrophes and then stimulate the adrenocorticotropic 

hormone (ACTH) release from anterior pituitary into systemic 

circulation.  ACTH binds to the adrenal cortex and results in 

the synthesis and release of glucocorticoids, mineralocorticoid 

hormones and dehydroepiandrosterone from the adrenal 

cortex (4, 5).  

The magnitude and duration of glucocorticoid release by 

HPA axis is controlled by a negative feedback mechanism. In 

glucocorticoid negative feedback mechanism, the secreted 

glucocorticoids inhibit further release of ACTH and thus limit 

the excessive presence of cortisol levels.  Multiple feedback 

mechanisms are involved in modulating HPA axis function by 

glucocorticoids. Two important types are fast and delayed-

feedback mechanisms. Fast-feedback is sensitive to 

glucocorticoid secretion rate (non-genomic). In contrast, 

delayed-feedback is sensitive to glucocorticoid levels 

(genomic actions) (6).   

There are two steroid receptors in the brain, glucocorticoid 

receptor (GR) and mineralocorticoid receptor (MR). GR is 

highly expressed in brain regions that regulate stress 

responses and mediates chiefly the negative feedback 

mechanism upon exposure to stress. In contrast, MR is 

restricted than GR in its expression and regulates HPA basal 

tone (7).  

Regulation of hypothalamic–pituitary–adrenal axis by 

limbic brain circuits 

The involvement of the limbic system (medial prefrontal 

cortex, hippocampus and amygdala) in the regulation of 

HPA axis is complex. Functional alterations in the regulation 

of HPA axis by limbic system may be responsible for hyper 

or hyposecretion of glucocorticoids. Stress results in the 

functional alterations in the regulation of HPA axis by limbic 

system which in turn leads to allostatic load rather than 

allostasis and ultimately results in several stress disorders.  

Thus, the overall connection between alteration in limbic 

structures, HPA axis dysfunction and affective disorders is 

associated with impaired integration of hippocampal, 

amygdala and medial prefrontal cortical information at one 

or more of the key regulatory nodes. 

Role of hippocampus 

The involvement of hippocampus in the inhibition of the HPA 

axis has been shown in many studies. The ventral subiculum 

(vSUB) sends excitatory projections to numerous subcortical 

regions, including the posterior bed nucleus of the 

striaterminalis (BST), peri-PVN region, ventrolateral region of 

the medial preoptic area (vlPOA) and ventrolateral region 

of the dorsomedial hypothalamic nucleus (vlDMH). All these 

send γ-amino butyric acid (GABA)ergic projections to the 

PVN and are likely to communicate transsynaptic inhibition. 

Lesions in the hippocampus cause the accumulation of the 

corticosterone, ACTH and CRH/AVP mRNA levels. This implies 

hippocampus inhibits the HPA axis and decreases the 

secretion of glucocorticoids on stimulation (8-14). The role of 

the hippocampus in negative feedback processes is not yet 

clear. However, hippocampus highly expresses GR and MR. 

The excessively produced glucocorticoids during the stress 

conditions cause the destruction of the hippocampus and 

alteration of HPA axis. In contrast, some lesion studies on the 

dorsal hippocampus reported that some hippocampal 

regions upon stimulation increase the release of 

corticosterone and activates HPA axis (7). 

Role of medial pre-frontal cortex (mPFC) 

The mPFC also plays a crucial role in the regulation of stress. 

Evidence shows both inhibitory and excitatory effect of mPFC 

on HPA (7). Lesion in the right infralimbic cortex decreases 

glucocorticoid secretion. On the contrary left-sided lesions do 

not affect glucocorticoid secretion (15). Thus, organization of 

PFC and its effect on HPA axis are complicated. The 

anatomy of mPFC efferent may explain the inhibitory as well 

as excitatory influence of mPFC on HPA axis. The mPFC 

include neurons of the prelimbic, anterior cingulate and 

infralimbic cortices. These appear to have different actions 

on the HPA axis stress response. The prelimbic and anterior 

cingulate send excitatory projections to regions such as the 

dorsomedial hypothalamus, peri-PVN zone, BST and 

ventrolateral preoptic area. Both peri-PVN zone and BST 

send direct GABAergic (negative) projections to the medial 

parvocellular PVN. Thus, these regions are involved in stress 

inhibition. In contrast, the infralimbic cortex projects to the 



 
Saxena B. et al., March - April, 2012, 1(1), 28-31 

 

©SRDE Group, All Rights Reserved.                             Int. J. Res. Dev. Pharm. L. Sci.                                                                         30 

 

medial and central amygdala, anterior BST and the nucleus 

of the solitary tract (NTS). These send excitatory projections 

to the PVN implying a means of PVN excitation from this 

cortical region. All of these regions are involved in stress 

excitation (16-18). Hence, different regions of the PFC play 

different roles in HPA axis regulation. The mPFC also highly 

expresses GR (19, 20). These excessive GR are involved in 

the glucocorticoid feedback mechanism. Therefore, mPFC is a 

site for glucocorticoid negative feedback regulation to 

defined stress modalities (7). 

Role of amygdala 

The amygdala is considered to activate the HPA axis. This 

activation is mainly mediated by the medial and central 

amygdaloid parts. The neurons from amygdala are 

projected to basal forebrain, hypothalamic and brainstem 

structures (21). Various studies show that lesions of the central 

(CeA) or medial amygdaloid (MeA) nuclei reduce ACTH 

and/or corticosterone secretion following stress and 

decreases HPA axis output (22-24), whereas activation of 

CeA or MeA nuclei increases HPA axis output (25, 26). The 

MeA nucleus sends inhibitory projections to BST, vlPOA and 

peri-PVN which in turn send GABAergic projection to PVN, 

thus eliciting a transsynaptic disinhibition. Similarly, CeA 

nucleus sends GABAergic innervations to the ventrolateral 

BST, upto a lesser extent to vlDMH and in the NTS. This may 

disinhibit ascending projections to the PVN.  

The CeA and MeA nuclei also express GR and MR (7, 27). 

Expression of MR is notably less than GR. Amygdala is also a 

potential target for glucocorticoids like other limbic regions. 

The role of the CeA and perhaps MeA in glucocorticoid 

signalling may differ substantially from that of the 

hippocampus/PFC. In contrast to the inhibitory effects of 

glucocorticoids on CRH production in the PVN (12, 28), 

glucocorticoids increase CRH expression in the CeA (29). 

Moreover, implants of glucocorticoids into the CeA do not 

affect acute stress responsiveness, while augment autonomic 

responses to chronic stress exposure (30). Therefore, these 

finding led to the interesting hypothesis that amygdalar GR 

play a “feed forward” role in stress regulation, serving to 

augment rather than attenuate HPA responses (31). 

SAS and HPA axis interaction 

SAS and HPA axis are reciprocally innervated. The most 

well-studied and pronounced interaction of SAS and HPA 

axis is the bidirectional regulation of CRH and 

norepinephrine systems. The feedforward system consisting 

of CRH and norepinephrine acts at different levels of the 

CNS and promotes the activation of each other (32). 

Increased norepinephrine and epinephrine secretion tends to 

reduce serum leptin levels. On the other hand leptin from 

adipose tissue directly inhibits secretion of glucocorticoids 

(33). This feedforward cycle is hypothesized to coordinate 

the biological response of an organism to environmental 

challenge. Any dearrangement in its function would lead to 

the collapse of the stress response and increase the 

vulnerability to stress disorders (32).  
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