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Abstract

The combination of genome- and phenome-wide association studies (GWAS and PheWAS, respectively) has
been critical for our understanding of complex human diseases, including autoimmune disorders such as multiple
sclerosis (MS). In this mini-review, we will shed light on recent advances in human population genetics, and we will
focus on techniques used to overcome the challenge of bridging genotype to phenotype. We will also discuss our
own experience with the analysis of the Abelson helper integration site [1] (AHI1) locus, which was found to be
associated with increased risk for MS.
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Historical Background
After more than a decade of international collaboration, the Human

Genome Project was finally completed in 2003, paving path to the
subsequent exponential growth in our understanding of individual
genetic variation and its effect on complex human diseases. Finding
clinically significant associations between genetic variation and disease
required analyzing massive data sets from large cohorts of individuals.
Collecting genetic data presented a great early challenge, as initial
sequencing techniques were slow, expensive and inefficient [1].
Fortunately, technology rapidly progressed, and by 2013, next-
generation sequencing (NGS) became available [2]. NGS allows for
rapid, accurate, and high-throughput sequencing of entire genomes,
making large scale genetic studies feasible. The increasing affordability
of NGS has allowed not only high-throughput DNA but also RNA
sequencing (RNAseq) to be performed, leading to creation of libraries
of gene expression for individuals and for specific tissue types [3].
Analysis of single nucleotide polymorphisms (SNPs) lead to the advent
of genome-wide association studies (GWAS) [4]. In turn, phenome-
wide association studies (PheWAS)–in which the occurrence of large
numbers of phenotypes (clinical and molecular) was related to an
outcome of interest–were also being performed [5]. The two studies
have been converging as we seek to understand the functional
consequences of genetic variation associated with MS and other
diseases. Despite great progress on all fronts, much remains to be done
to expand the list of disease-associated loci, perform fine mapping
efforts to identify causal variants, and understand the impact of these
genetic variants on cellular function [6]. In the following paragraphs,
we will focus on the tools available for discovering genetic associations
with complex human disease. We will then describe techniques that
can be used to overcome one of the most important challenges that still
exist in systems genetics research: identifying the underlying

mechanism by which the genome controls the phenome (often
confounded by interactions with the environment).

SNPs, GWAS, and PheWAS
The most common method for identifying associations between

genomic variation and disease is via SNPs, which are variations of
single nucleotides in the DNA sequence of individuals [7]. SNPs are
present throughout a person’s genome and can be associated with
phenotype (i.e. traits, such as human disease). GWAS formally analyze
these associations in large cohorts of individuals with a specific disease
[8-10]. The advent of specialized genotyping array chips allowed for
the creation of customized SNP sets that can inexpensively and rapidly
screen the entire human genome to genotype SNPs suspected to be
relevant to the disease of interest. For example, the ImmunoChip was
designed to evaluate SNPs for a variety of inflammatory diseases,
including rheumatoid arthritis (RA), Crohn’s disease, type I diabetes,
and MS [11-14]; on the other hand, the MS Chip was recently created
specifically for MS and helped to identify up to 551 potential disease-
associated genes [15]. Using similar arrays, numerous studies were
conducted in the past decade for other autoimmune diseases, such as
lupus and scleroderma [16,17]. The GWAS Catalog makes the results
of all studies available to the public at https://www.ebi.ac.uk/gwas. As
of June 2018, the GWAS Catalog contained over 60,000 unique SNP-
trait associations, a number that has been rapidly growing (in 2014,
there were about 12,000 associations) [4]. In contrast to GWAS, which
seeks the genomic regions/loci that vary in a specific disease, PheWAS
looks at variation in human traits to identify disease associations.
PheWAS is a broad term that encompasses either clinical traits, like
those examined in traditional epidemiologic studies, or molecular
traits, such as RNA expression – also referred to as transcriptome-wide
association studies (TWAS) or differential gene expression (DGE)
studies [18-20]. Whereas GWAS was made possible by genotyping
arrays, PheWAS was made possible by the mining of electronic health
records, which contain trait and disease data for large cohorts of
patients, as well as by RNA expression and sequencing studies [21,22].
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A PheWAS catalog resource is also available at https://
phewascatalog.org.

eQTLs
Although thousands of SNP-trait associations have been identified

by GWAS, the clear majority contribute only minimally to the total
heritability of a trait or disease on a per SNP basis [9,23]. Many human
diseases, especially autoimmune disorders, are influenced not only by
multiple genes but also by the environment [24]. The polygenic
architecture of these diseases is revealed when the effect sizes of all
SNPs are combined to show that a much greater proportion of total
heritability can then be explained [23,25]. Interestingly, fewer than
10% of SNPs occur in coding regions of genes; most loci occur in non-
coding regions, suggesting that SNPs regulate gene expression rather
than modifying gene products directly [4]. The genetic regulation can
occur via promoter regions of the genome, transcription factors, non-
coding RNA, or via other epigenetic mechanisms. The challenge
remains to identify the candidate gene(s) that are affected by a certain
SNP. Expression quantitative trait locus (eQTL) mapping is a method
to quantify the effect size of a SNP on gene expression [26]. In this
method, mRNA levels of the candidate gene are measured for the three
possible genotypes of the SNP: e.g. for a T/A SNP, we have TT, TA, and
AA genotypes. If the SNP influences gene expression, mRNA levels
should differ among the 3 genotype states, usually following an
additive model, as shown in Figure 1. An eQTL value can thus be
calculated for numerous genes near or distant to the SNP associated
with the disease. Genes that are the target of the eQTL are typically
located nearby (<1 megabases, cis-eQTLs) and, more rarely, far away
(typically >1-5 megabases or a different chromosome, trans-eQTLs)
from the SNP of interest [27]. The effect size and reliability of true
trans-eQTL association usually decreases with increasing distance [28].

Figure 1: Representative plots of eQTL analysis in CD4+ T-cells: The
left panel shows a significant difference in AHI1 mRNA expression
levels of the target gene, suggesting that risk genotype of the
rs4896153 SNP strongly affects AHI1 gene expression in CD4+ T
cells. The right panel shows no significant effect on the PDE7B gene
expression in relation to the SNP genotype. Each dot represents and
individual. Sample size of each genotype for the corresponding SNP
is shown.

Tools for Bridging the Gap between Genome and
Phenome

Biological samples from human cohorts
As mentioned previously, effect sizes of individual SNPs are small;

hence, large cohorts of subjects are needed to identify associations with
disease or expression traits. To overcome this challenge, our group
created the PhenoGenetic Project, which initially consisted of healthy
subjects in the greater Boston area but has now expanded to New York
City [29]. Subjects are healthy adults without self-reported
autoimmune, neurological, metabolic or chronic infectious disease.
Individuals are recruited from metropolitan areas and are of different
ancestries, including African-American, East Asian, or European
ancestry. Demographic information recorded for each subject includes:
age, race, sex, smoking, weight, height, BMI, self-reported ethnicity,
blood pressure, and menstrual cycle. Subjects donate blood samples
and blood-derived products, such as serum and peripheral blood
mononuclear cells (PBMCs), which are frozen in an archive and can be
withdrawn for specific genotype studies or genome-wide studies. For
example, an atlas has been created correlating ex vivo gene expression
to genome-wide genotyping data [29], and investigators can request
the archived samples to examine immune cell phenotype based on the
desired genotype of the participant [30]. Because the PhenoGenetic
Project consists of healthy individuals, the biological specimens may be
used to study the normal immune response or risk genes associated
with any disease of interest in the absence of disease confounding
factors. As such, this cohort of subjects has already contributed to
several major projects: the ImmVar project (which assessed genetic
variation in immune function of healthy individuals) [31], an analysis
of a transcriptional factor involved in susceptibility to RA [12] and
Alzheimer’s disease [32], as well as an evaluation of a new MS risk
gene, AHI1, which we discuss more extensively below [33]. The
National Institute of Allergy and Infectious Disease, an organization of
the NIH, sponsors the Human Immunology Project Consortium
(HIPC) program that aims to create a comprehensive centralized
database of phenotypic data from well-characterized human cohorts.
The phenotypic data will be available to researchers for use and will
include transcriptional, cytokine and proteomic assays, as well as
assessment of subsets and functional status of leukocytes
[www.immuneprofiling.org]. In addition to healthy individuals, the
HIPC project also contains cohorts of individuals either vaccinated for,
or exposed to, specific infectious agents (e.g. influenza, smallpox, West
Nile virus) to allow for the assessment of the immune response to these
agents.

mRNA expression levels for eQTL replication ex vivo
An initial step in exploring the functional consequences of disease-

associated SNPs identified by GWAS is to detect cis-eQTLs that help to
map the exact gene(s) influenced by the variant of interest. While a
majority of cis-eQTLs are shared across cell types and tissues [34],
many eQTLs relevant to immunological disease have been shown to be
specific to a certain context, such as a certain cell type or stimulation
condition [24,29,35,36]. Thus, a specific immune cell type should be
chosen for eQTL analysis based on the interest of the investigator. For
example, CD4+ T-cells are often studied for T-cell driven autoimmune
disease like MS, and myeloid cells are studied in disorders like
Alzheimer’s disease in which monocyte and microglia are suggested to
play a critical role [29]. The desired cell type can then be isolated either
from stored human blood banks (e.g. the PhenoGenetic Project) or
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from animal models relevant to the disease [37]. mRNA levels, a
marker for gene expression, can be extracted from the cells and
measured using real-time quantitative PCR [38]. Plots like the ones in
Figure 1 will then show the eQTL effect for the target genes. Though
eQTLs in human tissue are of more direct clinical relevance, animal
models allow further mechanistic study of gene function in vitro and
in vivo by manipulation of expression with gene perturbation
techniques.

Bulk and single cell RNA-sequencing
Messenger RNA transcripts can be sequenced from either a single

cell (sc-RNAseq) or from a population of cells (bulk-RNAseq) [39]. In
recent years, RNA sequencing has become a more precise and
affordable technique, with single-cell analysis remaining significantly
more difficult and expensive to perform compared to bulk analysis.
Bulk-RNAseq provides the mean expression of individual genes from
the population of cells examined, which ideally would consist of the
same cell-type, due to the previously mentioned tissue-specificity of
many genes. However, inputting the same cell-type is not always
possible, especially when studying complex organs like the brain.
Furthermore, the immune system entails not only tissue-specific but
also cell-specific expression of genes. For examples, cells that encounter
a certain antigen may have a different expression profile than those
that do not. Though expensive, sc-RNAseq can overcome this
challenge by providing gene expression levels for individual cells, even
when a mixture of cell types is analyzed. Comparing the dissimilar
gene expression profiles obtained from sc-RNAseq results can also help
determine the number of cell types initially present in the tissue
analyzed. One caveat of RNA sequencing is that live cells must be used,
requiring fresh tissue. Frozen tissue can be analyzed with a newer
technique, single-nucleus RNA sequencing, which analyzes only the
nuclei at the expense of losing the mRNA from the cell cytoplasm [40].

Gene perturbation techniques
Having implicated alterations in a gene’s expression as the outcome

of a disease-associated variant, gene knockout animal models provide a
straightforward method for analyzing the function of the gene in vivo.
Mouse models, such as the experimental autoimmune
encephalomyelitis (EAE) model for MS, are ideal for investigating
neurological autoimmune disease, because of their well-characterized
genome, similarity to human physiology, short life span, and easily
detectable clinical features, allowing for characterization of the entire
disease course [41]. Because knockout models are time-consuming to
generate and maintain, the NIH funded the Knockout Mouse Project
(KOMP), an initiative aiming to make a null mutant allele for 8,500
genes in the commonly used C57BL/6 mouse strain (https://
www.komp.org/). Researchers can request specific genes to be
prioritized if they fall within the NIH target areas of funding
(specifically related to health and disease). Some genes are critical for
development/survival, rendering a germline animal knockout model
nonviable. In that case, Cre-LoxP-mediated recombination is a
technique that allows tissue-specific knockout of genes rather than
eliminating the gene from the entire organism [42]. Thus, lethal genes
or those critical for development can be studied using the Cre-LoxP
system if they also have a role in other cellular functions such as
immune responses. More recently, due to its precision, CRISPR/CAS9
genome editing has become widely preferred in performing knockout
experiments ex vivo in cell cultures [43]. The technique is especially
useful in studying immune cells, because it allows elimination of gene

function in both human and mouse cells without the need for a
knockout animal model.

Evaluation of phenotype (AHI example)
After gene perturbation, the phenotype of the affected cells can be

measured with techniques like flow cytometry that can quantify
surface and intracellular protein expression, including activating and
regulatory molecules, cell proliferation, and viability. For example, in
our recent analysis of the AHI1 locus that is associated with MS, [33]
we extracted T-cells from healthy human subjects homozygous for
either the AHI1 risk or protective genotype from the PhenoGenetic
project. The AHI1 gene was originally found to have a significant
eQTL effect with an MS-associated SNP in the PhenoGenetic cohort
data [29]. We found that T-cells from human subjects carrying the risk
genotype have decreased AHI1 mRNA expression. Using flow
cytometry analysis, we were able to show that these T-cells with the
risk genotype secreted more IFNγ, a strongly pathogenic inflammatory
cytokine critical to development of MS. We also replicated the
association of AHI1 expression with IFNγ secretion phenotype in
mouse T-cells extracted from the Ahi1 knockout mice: these mice
displayed an increased frequency of IFNγ-producing T-cells. Using
[3H]-thymidine proliferation assays, we showed that murine immune
cells from Ahi1 knockout mice exhibited impaired T-cell proliferation
compared to the wild-type counterparts, a phenotype consistent with
prior reports that described AHI1 as an oncogene [44]. Studying the
effects of AHI1 on disease progression using the EAE mouse model of
MS could potentially confirm that absence of Ahi1 leads to more
severe disease, as is also suggested by a recent study reporting that
pediatric and adult MS patients with two copies of the AHI1 risk allele
were more likely to have disease relapses [45]. These next series of
experiments would extend the experimental path from genotype to
phenotype to include not only an investigation of disease-susceptibility
but also of the potential role for AHI1 in clinical progression once the
disease has started.

Conclusion
Recent advances in the efficacy and affordability of high-throughput

genotyping enabled the generation of large genome databases that have
identified tens of thousands of SNP-disease associations. Reminiscent
of the challenges that followed the completion of the Human Genome
Project, a large proportion of these variants have no known functional
consequence. System analyses using multiple types of genome
annotations from large resources such as GTEX may help to make
predictions about target genes and mechanistic pathways, [34] but,
ultimately, time-consuming and laborious ex vivo and in vivo work is
needed to explore the mechanism of a variant. The genetic tools and
laboratory techniques described in this mini-review can help
undertake the important challenge of bridging genotype to phenotype,
which will accelerate our understanding of disease pathophysiology
and will yield new targets for drug development, completing the
translational arc that starts with gene discovery.
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