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Introduction
Cachexia is defined as an extreme wasting condition with marked 

weight loss, anorexia, and lassitude [1]. About half of all cancer patients 
show a syndrome of cachexia characterized by loss of adipose tissue 
and skeletal muscle mass. Such patients have a decreased survival time 
compared with that of patients without weight loss [2]. Abnormal 
metabolism is thought to be the basis of the cachexia status in advanced 
cancer patients. Cachexia induces the cytokines, in particular tumor 
necrosis factor (TNF)-α, IL-1, and IL-6 [3-9], is thought to inhibit the 
activity of lipoprotein lipase (LPL), and thereby induces weight loss as a 
result of reduced fat accumulation in the tissues. Therefore, it is thought 
that emaciation of cancer patients might be prevented and cachexia 
improved by increasing LPL activity. 

On the other hand, obesity in adulthood is characterized by 
adipocyte hypertrophy. Adipose tissue participates in the regulation of 
energy homeostasis. High-fat diet-induced insulin resistance associated 
with obesity is a major risk factor for diabetes and cardiovascular disease. 
Adipose tissue itself serves as the site of triglyceride (TG) storage and 
free fatty acid release in response to changing energy demands [10]. 

LPL plays a pivotal role in lipids and the metabolism of lipoprotein 
[11]. Major functions of LPL include the hydrolysis of TG-rich 
lipoproteins and release of non-esterified fatty acid (NEFA), which are 
taken up and used for metabolic energy in peripheral tissue such as 
muscle, or are re-esterified into TG and stored in adipose tissue. The 
balance between these competing effects could determine whether 
increased LPL activity will lead to a reduced rate of weight gain or to 
increased adiposity through increased rates of adipose tissue storage 
of TG. An imbalance of LPL activity may alter the partitions of plasma 
TG between muscle and adipose tissue, and thus influence insulin 
resistance and obesity. 

Institute of Otsuka Pharmaceutical Factory, Inc. synthesized the 
LPL activator NO-1886 ([4-(4-bromo-2-cyano-phenylcarbamoyl)-
benzyl]-phosphonic acid diethyl ester, CAS133208-93-2, generic name: 
ibrolipim). 

Hara et al. reported that LPL activator NO-1886 treatment in high-
fructose diet induced insulin resistance rats decreases the respiratory 
quotient (RQ) and plasma TG [12]. These results may indicate the 
elevation of LPL activity ameliorate obesity. 

Therefore, we hypothesized that elevating LPL activity would cause 
an improvement of cachexia and obesity. To test this hypothesis, we 
studied the effects of the LPL activator NO-1886 in cachexia and obese 
animals. 

Lipoprotein Lipase (LPL)
LPL is a glycoprotein located on the luminal surface of capillary 

endothelial cells. The active enzyme is a nonconvalent homodimer [13]. 
The enzyme has an apparent monometric molecular mass of 60,000 
daltons on SDS-PAGE. The human LPL gene is approximately 30 kb 
in length [14]. 

LPL mRNA has been found in human adipose tissue, and also in 
muscle, adrenal, kidneys, intestine and neonatal, but not adult liver. The 
mRNA for LPL in humans is highly homologus with that of mice, rats 
and cows [15,16]. 

LPL binds to heparin sulfate [17] on the surface of endothelial cells 
via the heparin-binding site, which allows the enzyme to be extended 
into the plasma [18]. Following intravenous administration of heparin, 
LPL can be displaced from the endothelial surface into plasma (post-
heparin plasma), where enzyme activity can be measured. The active 
enzyme bound to heparin sulfate on the capillary endothelium is 
predominantly in the dimeric form. 

TGs and monoglycerides are preferred substrates for LPL, which 
preferentially hydrolyzes 1- and 3- ester bounds in TGs, generating 
2-monoglycerides, which are converted to 1-monoglycerides by 
isomerization for further hydrolysis [19]. A small portion of the core 
TG from chylomicron and very-low-density lipoprotein (VLDL) can 
be transferred to HDL. More important contributors to high density 
lipoprotein (HDL) are the surface remnants of the TG-rich lipoproteins 
that occur as a result of hydrolysis of core TG. Nikkila et al. have noted 
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a relationship between LPL activity and HDL-C, especially HDL2 
cholesterol (HDL2-C), in many clinical situations [20]. Tsutsumi et 
al. [21] reported that plasma TG levels were inversely correlated with 
post-heparin plasma LPL activity, while HDL-C levels were positively 
correlated with the activity of the enzyme in rats. 

Insulin increases LPL activity, rates of LPL synthesis and LPL 
mRNA levels in adipocytes [22]. Since insulin does not stimulate LPL 
gene transcription [13], the increases in steady-state LPL mRNA must 
be due to changes in mRNA stability (post-transcriptional mechanism).

Insulin-deficient diabetes results in a reduced degradation of VLDL 
by the reduction of functional (endothelium-bound) LPL activity in 
myocardium and adipose tissue, and short-term administration of 
insulin in vivo restores the effects of LPL activity in adipose tissue, but 
not in myocardium [23]. 

Whether LPL directly or indirectly promotes or protects 
against atherosclerosis remains controversial. Misenbock et al. 
[24] reported that LPL +/- humans have atherogenic lipoproteins, 
especially in the postprandial state. Katzel et al. [25] found that older, 
normocholesterolemic, nondiabetic athletic individuals with silent 
myocardial ischemia have increased insulin resistance, increased post-
heparin plasma hepatic triglyceride lipase (HTGL) activity and reduced 
postprandial response of abdominal adipose tissue LPL activity to 
feeding. These conditions are associated with low HDL2-C levels and 
increased postprandial lipemia. The abnormalities in plasma HDL-C 
and postprandial TG metabolism may increase the risk for coronary 
artery disease in these subjects. 

Reymer et al. [26] studied human LPL mutations. They showed 
that in approximately 1 in 20 males with proven atherosclerosis, 
an Asn291Ser mutation in the human LPL gene is associated with 
significantly reduced plasma HDL-C concentrations and results 
in a significant decrease in LPL catalytic activity. They showed the 
relationship between LPL activity and plasma HDL-C concentrations, 
and suggested that a specific LPL mutation may be a factor in the 
development of atherosclerosis. 

Higher levels of post-heparin plasma LPL activity are associated 
with decrease plasma TG and increased HDL-C [21]. People who 
are heterozygous for LPL deficiency have increased plasma TG and 
decreased plasma HDL-C concentrations, a profile associated with 
increased atherogenic risk [27]. These reports suggest that increased 
post-heparin plasma LPL activity is associated post-heparin plasma 
LPL activity is associated with protection against atherosclerosis in 
humans. 

Fan et al. [28] generated transgenic rabbits expressing human LPL 
to elucidate the physiological roles of LPL in lipid and lipoprotein 
metabolism. When the transgenic rabbits were fed a cholesterol-rich 
diet, the development of hypercholesterolemia and aortic atherosclerosis 
was dramatically suppressed. Using another model, Shimada et al. [29] 
established an over expressed human LPL gene in the heart, skeletal 
muscle and adipose tissue of mice. These transgenic mice had 5- and 
1.7-fold higher LPL activity in adipose tissue and post-heparin plasma, 
respectively. Also, VLDL triglycerides were greatly reduced and HDL2 
was increased 1.4-fold. These results demonstrated that the lipid profile 
in these LPL transgenic mice is antiatherogenic. 

Shimada et al. [30] also created LDL receptor knockout mice 
(LDLRKO) that overexpressd LPL (LPL/LDLRKO) by mating LPL 
transgenic mice to LDLRKO mice, and compared their plasma 
lipoprotein profiles and atherosclerosis with those in nonexpressing 

LDLRKO mice. LPL/LDLRKO mice showed marked suppression of 
mean plasma TG concentrations and a modest decrease in cholesterol 
concentrations compared to LDLRKO mice. Thus, it was showed 
that the altered lipoprotein profile, in particular the reduced level of 
remnant lipoproteins exerts protection by LPL against atherosclerosis. 

Regarding the LPL activator NO-1886, NO-1886 were significantly 
dose-dependent increases in post-heparin plasma LPL activity 
in normal rats [21]. On the other hand, NO-1886 did not affect 
post-heparin plasma HTGL. NO-1886 also significantly and dose-
dependently increased tissue LPL activity in normal rats. NO-1886 
enhanced expression of LPL mRNA in adipose tissue and myocardium, 
and increased LPL protein mass and LPL activity in post-heparin 
plasma [21]. 

NO-1886 was significantly dose-dependent decrease in plasma TG 
levels, with concomitant increase in plasma HDL-C in rats, hamsters and 
rabbits [31]. Endothelial function is closely related to the development 
of atherosclerosis and is impaired before the development of initial 
lesions in hypercholesterolemic animals [32]. Aging is associated 
with a progressive development of dyslipidemia, insulin resistance 
and obesity, all of which are risk factors for cardiovascular disease 
and atherosclerosis [33]. It is known that endothelium-dependent 
relaxation decreases with age [34]. Previously, we reported that NO-
1886 ameliorated the aging-related deterioration of endothelium-
dependent relaxation in thoracic aorta in 10-month-old male rats 
[35]. We also reported that NO-1886 prevented the development of 
impaired endothelium-dependent relaxation of rat thoracic aorta in 
2-year-old male rats [36]. These groups speculated that NO-1886 might 
have improved the endothelium-dependent relaxation by normalizing 
the lipid disorder, in particular by elevating plasma HDL-C, which 
possesses antioxidant effects [37] and is very important in exercised 
old rats due to elevated plasma lipid peroxide levels caused by exercise 
[36]. Long-term administration of NO-1886 to rats with experimental 
atherosclerosis caused by a high-cholesterol diet significantly inhibited 
the development of atherosclerotic lesions in the coronary arteries 
[21]. The results of multiple regression analysis in the studies suggest 
that plasma HDL-C is a strong protective factor against atherosclerosis 
in coronary arteries. Chiba et al. [38] administered NO-1886 to 
cholesterol-fed New Zealand white rabbits for 20 weeks. NO-1886 
increased post-heparin plasma LPL activity 30-40% compared with 
the control group. Plasma HDL-C concentrations were 2-fold greater 
in the NO-1886 group compared to in the controls, and plasma TG 
was reduced to the level of normal controls. Post-heparin plasma LPL 
activity was positively correlated with plasma HDL-C and inversely 
correlated with plasma TG. The relative atheomatous area in the aorta 
was reduced to 11-14% in the NO-1886 group compared to 51% in 
the control group. Multiple regression analysis of post-heparin plasma 
LPL activity, plasma HDL-C and TG indicated that plasma HDL-C was 
the most powerful protector against aortic cholesterol accumulation. 
A decrease in plasma TG also protected against atherosclerosis, 
though not as strongly as plasma HDL-C. They concluded that NO-
1886 prevented the development of atherosclerosis by increasing LPL 
activity, resulting in an increase in plasma HDL-C and a decrease in 
plasma TG, without a significant influence of plasma total cholesterol 
concentrations. 

Yin et al. [39] created a diabetic rabbit model with atherosclerosis 
in the aorta by feeding a high-fat/high-sucrose diet. They administered 
NO-1886 to these rabbits to determine whether the LPL activator had 
an antiatherogenic effect. NO-1886 decreased plasma cholesterol and 
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TG, and increased plasma HDL-C. Interestingly, NO-1886 provided 
protection against the development of atherosclerosis in the aorta. These 
results suggest that NO-1886 not only ameliorates the lipid disorder but 
also lower plasma glucose levels and suppresses atherosclerosis in the 
aorta of diabetic rabbits. 

These published papers show that activation of LPL protects against 
the development of atherosclerosis. 

Cachexia
Cachexia is defined as an extreme wasting condition with marked 

weight loss, anorexia, and lassitude [1]. It is observed in patients with 
cancer and severe infectious disease, and is a terminal manifestation 
of these diseases. About half of all cancer patients show a syndrome 
of cachexia characterized by loss of adipose tissue and skeletal muscle 
mass. Such patients have a decreased survival time compared with that 
of patients without weight loss [2]. Adipose tissue atrophy is marked in 
cachectic patients and animals. Fat deposition is accomplished by the 
action of LPL in adipose tissue and by de novo lipogenesis in the liver 
and adipose tissue [40]. LPL activity in adipose tissue has been reported 
to be depressed in tumor-bearing animals [40-42]. Vlassara et al. 
reported that LPL activity in cancer patients was lower than in healthy 
persons and that the degree of the decrease was closely correlated with 
the degree of weight loss when LPL activity was determined in the post-
heparin plasma of these patients [43]. 

Research on cytokines and cachexia has advanced, and it has 
become clear that certain cytokines are involved in the onset of cachexia 
[3,44]. TNF [3,44], IL-1 [45] and IL-6 [46], in particular, are thought 
to inhibit the activity of LPL, thereby suppressing hydrolysis of VLDL-
TG, decreasing the supply of NEFA to adipose tissue, and eventually 
inducing weight loss as a result of a reduction of fat accumulation in 
the tissue. LPL activity is reported to decrease as the tumor burden 
increases in tumor-bearing animals and patients with lung cancer, thus 
LPL is suggested to be the mechanism inducing the decrease in fat 
depots in cancer patients [41,42,47]. 

Cachexia patients and cancer-bearing animals show decrease in 
LPL activity in postheparin plasma and adipose tissue, and a number of 
reports have indicated that the decrease in LPL activity is presumably 
attributable to the emaciation in cachexia [40-43]. This suggests that 
emaciation can be prevented and cachexia improved by suppressing 
the decrease in LPL activity. Ohara et al. [48] therefore administrated 
an LPL activator NO-1886, to a rat model of cachexia to investigate its 
effects [48]. 

Obeid et al. have reported that the Leydig cell tumor is a model that 
resembles human cachexia rather well, because the tumor induced slow 
progression of anorexia, as well as marked weight loss [49]. Sabatini et 
al. [50] have reported that Leydig cell tumors produce TNF and that 
TNF induces cachexia. Therefore, LPL activator NO-1886 administered 
to Leydig cell tumor-bearing rats may have beneficial effects. When 
Leydig cells were inoculated into rats, there was an early decrease in 
plasma total protein and albumin levels after inoculation, followed by a 
decrease in plasma glucose and HDL-C, with the animals showing signs 
of malnutrition throughout. Food consumption decreased after tumor 
inoculation, and thereafter the rats rapidly grew leaner. LPL activity in 
rat adipose tissue and adipose tissue weight were decreased by Leydig 
cell inoculation. NO-1886 prevented the decrease in carcass weight and 
malnutrition resulting from the appetite suppression attributable to 
Leydig cell tumors. From these results, the LPL activator is considered 
to be potentially beneficial for the treatment of cancer cachexia and 
other wasting syndromes. 

Also, anticancer drugs have side effect such as appetite suppression 
and reduction of body weight. Therefore, combination therapy with 
anticancer drugs and an LPL activator may result in suppression of the 
side effects. 

Obesity
Obesity in adulthood is characterized by adipocyte hypertrophy. 

Adipose tissue participates in the regulation of energy homeostasis. 
High-fat diet-induced insulin resistance associated with obesity is a 
major risk factor for diabetes and cardiovascular disease [10]. Adipose 
tissue itself serves as the site of triglyceride (TG) storage and free fatty 
acid release in response to changing energy demands [10]. Adipose 
tissue also participates in the regulation of energy homeostasis as an 
important endocrine organ that secretes a number of biologically active 
adipokines such as adipsin [51], leptin [52], plasminogen activator 
inhibitor-1 [53], resistin [54], TNF-α [55], and adiponectin [56]. LPL 
is one such adipokine. 

LPL plays a pivotal role in lipids and the metabolism of lipoprotein 
[11]. Major functions of LPL include the hydrolysis of TG-rich 
lipoproteins and release of NEFA, which are taken up and used for 
metabolic energy in peripheral tissue such as muscle, or are re-esterified 
into TG and stored in adipose tissue. The balance between these 
competing effects could determine whether increased LPL activity will 
lead to a reduced rate of weight gain or to increased adiposity through 
increased rates of adipose tissue storage of TG. 

Some reports have suggested that LPL activity in adipose tissue 
is high in obesity [57,58]. An imbalance of LPL activity may alter the 
partitions of plasma TG between muscle and adipose tissue, and thus 
influence insulin resistance and obesity. 

Shimada et al. [59] have reported that none of the mice in which 
human LPL gene expression was induced became obese, and that 
storage and decomposition of fat were balanced in mice as a result 
of increased activity of hormone-sensitive lipase in adipose tissue. In 
other words, because of homeostasis body weight may not be increased 
in normal animals even by elevation of LPL activity. 

Jensen et al. [60] have reported that overexpression of human LPL 
in skeletal muscle prevents diet-induced obesity in transgenic mice. 
Accordingly to Ferraro et al. [61] the RQ is inversely correlated with 
LPL activity in skeletal muscle in Pima Indians, and Pima Indians have 
a high RQ, which is a risk factor for body weight gain. 

Hara et al. [12] have also reported that long term administration 
of LPL activator NO-1886 causes a reduction in RQ in high-fructose-
induced diabetic rats without fat accumulation in tissues. The RQ is the 
steady-state ration of carbon dioxide production to oxygen consumption 
by whole-body tissue metabolism. Therefore, in general, a decrease in 
RQ means an increase in fatty oxidation. Based on this information, we 
hypothesized that an LPL activator may improve obesity by activating 
LPL in skeletal muscle. 

NO-1886 was administered to rats rendered obese with a high-fat 
diet. NO-1886 suppressed the body weight gain and accumulation of 
visceral and subcutaneous fat. NO-1886 also increased skeletal muscle 
LPL activity without affecting adipose tissue LPL activity, and lowered 
the RQ in obese rats [62]. 

It has long been known that uncoupling proteins (UCPs) are 
responsible for facultative thermogenesis in rodents. UCPs play 
an important role in energy metabolism and obesity [63]. UCP1 
expression is restricted to brown adipose tissue (BAT), UCP2 is widely 
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expressed, and UCP3 is found mainly in skeletal muscle [64]. Doi et al. 
[65] have reported that NO-1886 accelerates the expression of fatty acid 
oxidation-related enzymes, resulting in a reduction of RQ. However, 
the mechanism for antiobesity effects of NO-1886 remained unclear. 
To clarify the mechanism, we studied the effects of NO-1886 on the 
expression of UCP1, UCP2, and UCP3 in rats [66]. NO-1886 did not 
affect the expression of UCP1 and UCP2 in BAT, mesenteric adipose 
tissue, and skeletal muscle, but NO-1886 increased the expression of 
UCP3 mRNA only in skeletal muscle. Therefore, a possible mechanism 
for NO-1886′s antiobesity effects in rats may be the enhancement of 
LPL activity in skeletal muscle and the accompanying increase in UCP3 
expression. 

The antidiabetic agent pioglitazone is thought to promote 
the differentiation of adipocytes, convert large-type hypertrophic 
adipocytes into small-type adipocytes, and to increase insulin activity 
through peroxisome proliferator-activated receptor-gamma activation 
[67]. In addition, thiazolidinediones have also been shown to improve 
the serum levels of several adiopocytokines, such as adiponection and 
TNF-α, in type 2 diabetic patients [68]. However, as a result of enhanced 
adipocyte differentiation, pioglitazone treatment has been shown to be 
associated with body weight gain in obese animals and type 2 diabetic 
patients [68-70]. As the mechanism underlying the body weight 
gain, Hallakou et al. [71] explained that pioglitazone stimulated the 
expression of genes involved in lipid metabolism and induced a large 
increase in glucose utilization in the adipose tissue. Obesity aggravates 
diabetes and promotes cardiovascular diseases and atherosclerosis, and 
the body-weight-increasing action of pioglitazone is a disadvantage 
in diabetic patients. On the other hand, the LPL activator is known to 
improve both obesity and insulin resistance in obese animals [62,66]. 

Recently, we investigated the effect of the simultaneous 
administration of pioglitazone, which induces a body weight gain, and 
NO-1886, which has an anti-obesity action, on the body weight and 
insulin resistance of obese rats [72]. The concomitant administration of 
pioglitazone and NO-1886 suppressed the body weight gain in animals 
fed a high-fat diet, confirming that NO-1886 mitigates the body weight-
increasing action of pioglitazone. Since an assessment of their effects on 
insulin resistance showed that both pioglitazone and NO-1886 treated 
to increase the glucose infusion rate (GIR) in obese animals, these 
compounds may also improve insulin resistance. The percent increase 
in the GIR in the pioglitazone + NO-1886 group was greater than that 
in either the pioglitazone or the NO-1886 group. Consequently, the 
improvement of insulin sensitivity may be enhanced by the combined 
administration of pioglitazone and NO-1886, compared with that 
observed following the administration of either drug alone. Thus, the 
combined administration of pioglitazone and LPL activator may be of 
great benefit for the treatment of type 2 diabetic patients. 

Profile of LPL activator NO-1886 (ibrolipim) is shown in Table 1.

Conclusions
The main LPL synthetic tissues are adipose tissue and muscle. LPL 

in adipose tissue has a role in fat storage, where LPL in skeletal muscle 
has a role in fatty oxidation. Therefore, if adipose tissue-specific LPL 
activators and skeletal muscle-specific LPL activators are developed, we 
may be able to design anticachexic and antiobesity drugs. LPL activator 
NO-1886 improved cancer cachexia by elevating adipose tissue LPL 
activity, and it improved obesity by elevating skeletal muscle LPL 
activity. We expect further evaluation of tissue-specific LPL activators 
may also show a clinically relevant benefit in the treatment of lipid-
associated and non-lipid-associated diseases.
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