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Introduction 
Anaerobic digestion (AD) has become an increasingly important 

industrial process. AD is a green technology involving the generation 
of methane-rich biogas via the biological degradation of regionally-
available biomass like agricultural and municipal solid wastes and 
wastewaters. AD processes have for many years been used to treat 
and sanitize sewage sludge waste from aerobic wastewater and animal 
manure, reduce its odor and volume, and produce useful biogas. Biogas 
in turn is a first generation, renewable biofuel that offers the prospect 
of replacing fossil fuels in the transportation sector and limiting the net 
greenhouse gas emissions implicated in climate change [1]. 

Between 1950-1980, high production-rate systems were developed 
and used to process effluents from agricultural and industrial sectors. 
Processing of effluents that contained toxic and recalcitrant compounds 
from the pulp/paper, petrochemical, and other chemical industries was 
later possible as both technology and knowledge pertaining to toxicity 
and biodegradability were enhanced [2]. AD technology has been 
widely adopted by Germany and Denmark, which have implemented 
rigorous waste disposal legislation. Since 2000, annual electricity 
generation from digester projects in the USA has increased almost 25-
fold from 14 million kilowatt-hours (kWh) to an estimated 331 million 
kWh per year [3]. 

The majority of current agricultural biogas facilities digest chicken, 
cow, and pig manure with co-substrates supplemented to increase the 
organic material content and gas yield [4]. Such co-substrates have 
routinely included harvest residues (e.g. Sugar beet leaves and tops), 
agricultural organic wastes (e.g. energy crops), and municipal food and 
waste bio-waste collected from restaurants and households [4-6]. The 
typical composition for common AD substrates is presented (Table 1). 
Substrate digestibility and biogas production are affected by substrate 
salinity, loading rate, mineral and volatile fatty acid composition, 
carbon-to-nitrogen ratio, and pH, as well as reactor temperature and 
Hydraulic Retention Time (HRT) [7-9]. Compared to AD systems in 
rural areas, those in urban settings require higher retention of biomass, 
smaller reactor volumes, shorter hydraulic retention times, and higher 
loading rates. 

Understanding process mechanisms and kinetics is required 

for good reactor design where operating conditions, methane (CH4) 
production, system stability, and effluent quality can be predicted or 
specified. Various models have been constructed to provide greater in-
depth understanding of the mechanisms influencing the bio-chemical 
AD process. Since the initial dynamic mathematical digester models 
of the late 1960s [10,11], additional and more complex models have 
been developed to account for significant microbial interactions and 
inhibitions [12-14]. 

Ideally, process models are supposed to describe the qualitative 
and quantitative aspects of microbial reactions, ranging from 
hydrodynamics and mass transfer to population dynamics in different 
reactor configurations under different environmental and operational 
conditions. However, the task of obtaining valid required kinetic 
constants is complicated by the fact that AD is itself a complicated 
multi-stage dynamic process that entails the concerted effort of several 
bacterial groups of bacteria. The composition of such groups varies 
in an unknown manner with changes in retention time, feedstock, 
temperature, reactor type, and other operating conditions. 

The task is further complicated by the lack of a valid and reliable 
method for quantifying microbial cell biomass in digesters containing 
insoluble substrates. The predictive power of AD models is limited by 
the lack of knowledge regarding the specific bacteria involved and their 
metabolism and physiological limitations. Therefore, current efforts to 
develop a feasible AD model typically rely on assumptions that in turn 
lead to the convenient disregard of real-world phenomena and non-
idealities. The objective here is to review the existing scientific literature 
as it pertains to development of models that involve, among other 
things, reactor kinetics and mixing, to enhance anaerobic digester 
design, optimization, scale-up, and operation. 
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Abstract
Anaerobic digestion (AD) of biowastes is the most conventional way to produce methane-rich biogas, which 

has great potential to replace the fossil fuel used in multiple applications, like vehicular transportation. Many 
countries and companies are involved in the design and construction of AD systems. Both efficient and economical 
AD performances are extremely important to promote worldwide adoption of this technology. Empirical methods 
have been traditionally used to scale up AD facilities, but these have required construction of expensive prototype 
systems and time-consuming studies. Alternatively, design and optimization of AD processes for biogas production 
can be enhanced via validated mathematical models developed from mechanistic studies that lead to a more in-
depth understanding of the very complex transport phenomena, microbial biochemical kinetics, and stochiometric 
relationships associated with AD. This paper provides a comprehensive literature review on the models available for 
AD processes.
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Anaerobic Digestion Pathways and Reactions 
Overall, the bio-chemical reactions occurring during AD can be 

classified as heterogeneous reactions (i.e. hydrolysis) and homogeneous 
reactions (i.e. acidogenesis, acetogenesis and methanogenesis). These 
very complex reactions transpire via a consortium of microorganisms	
which includes enzyme-secreting, fermentative, H2-consuming, H2-
producing, acetogenic, CO2-reducing, and aceticlastic methanogenic 
bacteria [4,5]. 

These AD reactions result in the formation of intermediates, 
release, their dissolution into the aqueous phase, and their metabolic 
conversion into products. Death and lysis of viable bacteria, such 
as anaerobic decomposition of viable, biological solids (e.g. waste 
activated sludge, algae), is first needed prior to the uptake of organic 
compounds. Organic compounds in the sludge (e.g. lipids, proteins, 
and carbohydrates) are then biologically decomposed by extra-cellular 
enzymes (e.g. lipase, protease, and cellulase) to small and soluble 
products that can then be transported across bacterial cell membranes 
and undergo various intra-cellular metabolic processes. There they are 
converted to intermediate compounds like fatty acids, amino acids, 
acetic acids, sugars, and H2, which are ultimately converted to biogas 
comprised primarily of methane (CH4) and carbon dioxide (CO2) [15]. 

The three temperature regimes generally operated for anaerobic 
digesters are psychrophilic (10–25°C), and more frequently, mesophilic 
(25–45°C), and thermophilic (45–65°C). Constant temperature during 
AD must be maintained to avoid temperature fluctuations that 
adversely impact biogas production. Facilities running at thermophilic 
temperatures are usually lower in methanogenic diversity, more 
sensitive to temperature fluctuations, and need more time to adapt 
to a new temperature [16,17]. Mesophilic bacteria can withstand 
± 3°C temperature fluctuations without greatly sacrificing CH4 
production. The speed and efficiency of an AD process are enhanced 
by the higher methanogenic bacterial growth rate at thermophilic 
process temperatures. Compared to a digester operated at mesophilic 
temperatures, one at thermophilic temperatures can therefore be 
loaded to a higher extent or operated at a lower Hydraulic Retention 
Time (HRT). However, ammonia toxicity and the risk of wash-out 
of microbial populations increases with increasing temperature, 
potentially leading to greater imbalance and ammonia inhibition [18]. 

The generation of CH4 (a.k.a. methanogenesis) occurs within a 
relatively narrow pH range of 6.5-8.5 and optimally between 7.0-8.0. 
This differs from the ideal pH range for hydrolysis (5.5–6.5) [19,20]. 
At pH<6 or pH>8.5, methanogenesis is significantly inhibited. The 

pH generally increases with increasing concentration of ammonia 
arising from protein decomposition, and decreases with increasing 
concentration of key process intermediates like Volatile Fatty Acids 
(VFA) [21]. However, substrate buffer capacity, such as that found in 
the surplus alkalinity of animal manure, will in many cases prevent a 
pH decrease from VFA accumulation. Acetic acid is normally the most 
concentrated of carboxylic acids but is less inhibitory to methanogens 
than propionic and butyric acids [22,23]. Acidogenic bacteria 
generate organic acids that decrease digester pH [24] and have higher 
growth and reproductive rates than methanogenic bacteria. A two-
stage or multi-stage digestion system reportedly maximizes control 
over digester bacterial communities. Hydrolysis, acetogenesis, and 
acidogenesis normally occur within the first stage. This reactor buffered 
the feedstock addition rate. Organic matter was then heated to the 
required operational temperature (either mesophilic or thermophilic) 
before it was pumped into a methanogenic reactor [25].

Increasingly complex models for metabolic reactions have been 
developed with the recognition of various microbial groups and 
substrates in AD systems [12]. However, the difficulty in identifying 
the composition of complex, undefined substrates led to previous 
efforts to simulate co-digestion of various wastes that for simplicity 
were assumed to be defined by general compositions. For example, 
waterwaste was assumed to be composed of carbohydrates, proteins, 
lipids and others [26].The more advanced AD substrate pathways and 
stochiometry based on these assumptions [27] were presented in the 
following Angelidaki et al. [12] model and Anaerobic Digestion Model 
No.1 (ADM1) model [13]. 

A comprehensive model of anaerobic bioconversion 

A comprehensive model detailing the generation and degradation 
pathways of intermediates with associated interactions was previously 
developed by Angelidaki et al. [12]. This simulates co-digestion of 
complex wastes having different characteristics and compositions 
via the main pathways depicted (Figure 1). The model features the 
enzymatic hydrolysis of undissolved carbohydrates and undissolved 
proteins. It also involves eight types of bacteria. These include (1) 
glucose-fermenting acidogens, (2) lipolytic bacteria, (3) LCFA-
degrading acetogens, (4) amino acid-degrading acidogens, (5) 
propionate, (6) butyrate, (7) valerate-degrading acetogens, and (8) 
aceticlastic methanogens. To achieve reasonable accuracy without 
actual physical	 experimentation, the model’s assumed waste 
composition is conveniently generalized and defined by the following 
compounds that are routinely measured:

Note: DM: Dry of Matter 

Table 1: Typical composition for common substrates used in anaerobic digestion.

Composition
Dairy

Manure
[104,105]

Sewage
sludge

[106,107]

Food
waste
[108]

Fruit
waste
[108]

Grass
[108]

Wheat
straw
[109]

Sugar beet
[110,111]

Cellulose
(mg/g DM) 310 – 39–126 47 – 78 153 359.7 180 

Hemicellulose
(mg/g DM) 120 – 85 – 295 29 – 133 361 239.5 530

Lignin
(mg/g DM) 122 – 190 19 – 96 40 – 174 83 193.3 30

Crude protein
(mg/g DM) 125 – 297 140 – 346 90 – 208 102 – 169 150 6.5 87 – 128

Lipid
(mg/g DM) 23.8 – 46.4 6.6 – 155 35 – 81 22 – 118 66 1.5 15 – 25

Carbohydrate 
(mg/g DM) 125 101 – 198 263 – 609 450 – 514 263 853.1 40 – 70
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Carbohydrates: The model classifies carbohydrates as soluble, 
insoluble, and inert. Insoluble carbohydrates (C6H10O5)is are hydrolyzed 
by enzymes to soluble (C6H10O5)s and inert carbohydrates (C6H10O5)in 
[12]. 

( ) ( ) ( ) ( )6 10 5 6 10 5 6 10 5    1  → + −c cis s inC H O Y C H O Y C H O (R1)

where Yc represents the fraction of carbohydrates that are degradable.

Soluble carbohydrates are further degraded to acetate (C2H4O2), 
propionate (C3H6O2), butyrate (C4H8O2) in the following acidogenic 
step [18]:

( )6 10 5 3 5 7 2 2 4 2

3 6 2 4 8 2 2 2

    0.1115  0.1115     0.744    

  0.5     0.4409   0.6909    0.0254

+ → +

+ + + +
sC H O NH C H NO C H O

C H O C H O CO H O

		

(R2)

Propionate (C3H6O2) and butyrate (C4H8O2) are degraded to acetate 
(C2H4O2) and hydrogen (H2) in the following acetogenic steps [29]: 

3 6 2 2 3 5 7 2

2 4 2 2 2

 1.764   0.0458     0.0458
 0.9345 2.804 0.902

+ + →

+ + +

C H O H O NH C H NO
C H O H CO   (R3)

4 8 2 2 3 2

5 7 2 2 4 2 2

 1.7818   0.0544  0.0544  
0.0544  1.8909 1.8909

+ +

+

+ →

+

C H O H O NH CO
C H NO C H O H        (R4)

An empirical formula C5H7NO2 is used to represent biomass. The 
two pathways to generate methane (CH4) in the methanogenic step 
involve (1) hydrogen-using methanogenesis including Equation (R3’) 
and Equation (R4’) which are derived from the propinic step [Equation 
(R3)] and the butyrate step [Equation (R4)], respectively, and (2) 
aceticlastic methanogenesis, a primary methanogenic step where 
acetate is broken down to evolve CH4 and CO2 as follows [28]: 

2 3 2

5 7 2 4 2

2.804  0.01618  0.7413
 0.001618  0.6604  1.45

+ +
→ + +

H NH CO
C H NO CH H O

	           (R3’)

2 3 2

5 7 2 4 2

1.8909  0.0109  0.4999
 0.0109  0.4452  0.9780

+ +
→ + +

H NH CO
C H NO CH H O

	                (R4’)

2 4 2 3 5 7 2

4 2 2

 0.022     0.022
 0.945     0.066   0.945

+ →

+ + +

C H O NH C H NO
CH H O CO 		             (R5)

Lipid: Since oleate in many vegetable oils is the most abundant type 
of long-chain fatty acids (LCFA, C18H34O2), the model assumes glycerol 
trioleate (GTO, C57H104O6) as standard lipid. Decomposition of GTO 

involves (1) lipolysis to oleate and glycerol (C3H8O3) and (2) glycerol 
degradation to biomass (C5H7NO2) and propionate (C3H6O2) as follows 
[12]: 

57 104 6 3 8 3 18 34 23 2    3 + → +C H O H O C H O C H O 	             (R6)

3 8 3 3 2

5 7 2 3 6 2 2

 0.04071  0.0291  
0.04071  0.9418  1.09305 

+ + →

+ +

C H O NH CO
C H NO C H O H O

                (R7)

Decomposition of the oleate produced by LCFA-degrading 
acetogens involves a combination of the LCFA (R8) and hydrogen-
using (R9) steps [12]: 

18 34 2 2 3 2

5 7 2 2 4 2 2

 15.2398   0.1701  0.2500 
 0.1701 8.6998 14.500 

+ + +

→ + +

C H O H O NH CO
C H NO C H O H

      (R8)

2 3 2

5 7 2 3 6 2 2

14.500  0.0836  3.8334  0.0836
  3.4139  7.4997 

+ + →

+ +

H NH CO
C H NO C H O H O

                (R9)

After the LCFA (R8) and hydrogen-using (R9) steps, propionate 
(C3H6O2) is further degraded to acetate (C2H4O2), CO2 and H2 in the 
acetogenic (R3) step. Then the methanogenic (R3’), (R4’) and (R5) 
steps are carried out to generate CH4.

Protein: The model assumes gelatin (CH2.03O0.6N0.3 S0.001) as standard 
protein. Proteins are first hydrolyzed to amino acids as follows [12]: 

( ) ( ) ( ) ( )        1  → + −p pis inProtein Y Amino acids Y Protein   (R10) 

where Yp represents the fraction of protein that is degradable. Acidogenic 
bacteria then additionally decompose amino acids (CH2.03O0.6N0.3S0.001) 
to volatile fatty acids (VFAs) as follows [12]:

2.03 0.6 0.3 0.001 2 5 7 2

2 4 2 3 6 2 4 8 2

5 10 2 2 3 2

 0.3006 0.017013 
 0.29742  0.02904 0.022826
 0.013202  0.07527  0.28298  0.001 

+ →

+ +

+

+

+++

CH O N S H O C H NO
C H O C H O C H O
C H O CO NH H S

(R11)

Primary acids generated during gelatin decomposition include 
acetate (C2H4O2), propionate (C3H6O2), butyrate (C4H8O2), and valerate 
(C5H10O2). Valerate decomposition was experimentally determined as 
follows [12,18]: 

5 10 2 3 2 2

5 7 2 2 4 2 3 6 2 4

 0.0653  0.5543  0.8045 
0.0653  0.8912 0.02904  0.4454 

+ + +

→ + + +

C H O NH CO H O
C H NO C H O C H O CH

	

(R12)
Like Lipid, protein conversion to acetate involves sequential 

aceticlastic methanogenesis reactions described by Equation (R5) to 
split them to CH4 and CO2. Propionate (C3H6O2) and H2 go though the 
acetogenic (R3) step and hydrogen-using methanogenesis (R3’) and 
(R4’) steps to generate CH4.

As further described in upcoming section, hydrolytic steps here 
are assumed to follow 1st-order reaction rate laws with inhibition by 
total VFAs that include acetate, propionate, butyrate, and valerate. 
Acidogenic, acetogenic, and methanogic reactions are assumed 
to adhere to Monod growth kinetics with respect to their primary 
substrates. A growth rate-dependence on temperature, pH, and 
ammonia concentration is assumed for all bacteria reactions. 

Anaerobic digestion model No.1 (ADM1) model 

The International Water Association (IWA) ADM1 model was 
developed as a result of international collaboration among experts 
from multiple anaerobic process technology disciplines [13,29]. The 
collaboration’s primary aim was to create 241 a tool to overcome 

Lipids Carbohyd is

Carbohyd s Carbohyd in Protein inLCFA Glycerol Amino-acids

Protein Hydrolysis

Acidogenesis

AcetogenesisHValHBut

HAc

HPr

CO2 CH4

8

6 7

41

5

3 2

A B

Methanogenesis

Organic component

 Microbiological conversion
  Enzymatic conversion

Figure 1: Main pathways for anaerobic degradation of organic matter used in 
the Angelidaki et al. [12] model (A) hydrolysis of undissolved carbohydrates; 
(B) hydrolysis of of undissolved proteins; (1) glucose-fermenting acidogens; 
(2) lipolytic bacteria; (3) long chain fatty acid (LCFA)-degrading acetogens; (4) 
amino acid-degrading acidogens; (5) propionate (HPr)- degrading acetogens; 
(6) butyrate (HBut)-degrading acetogens; (7) valerate (HVal)-degrading 
acetogens; (8) aceticlastic (HAc)-degrading methanogens.
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the limitations of previously developed models. These were mainly 
attributed to their over-specificity and inability to be more widely 
applied. Conventional nomenclature, measurement units, and model 
structure in agreement with the pre-existing and popular activated-
sludge and anaerobic digester models from literature [13] were 
implemented during ADM1 model development. Conventional process 
variables like discretized organic acids and ammonium concentrations, 
sludge pH, and gas flow rates were also used as model outputs. 
Specificities or peculiarities for certain processes were omitted from the 
model to make it more generic and usable. Therefore, the ADM1 model 
can be regarded as a widely-applicable, baseline, or uniform platform 
that further welcomes any necessary application-specific refinements 
or modifications of certain processes. 

The structured ADM1 model simulates major processes associated 
with converting complex organic substrates into CH4, CO2, and inert 
by-products (Figure 2) [13,30]. Biochemical rate coefficients (vi,j) and 
kinetic rate equations (ρj) for soluble and particulate components 
(i=1-12; j=1-19), can be reffered to Batstone et al. [13]. The ADM1 
model simulates degradation of complex solids into proteins, fats, 
carbohydrates, and inert compounds. These degradation products 
are then hydrolyzed to amino acids, long chain fatty acids (LCFA), 
and sugars, respectively. Volatile organic acids and H2 gas can 
then be generated via the acidogenic fermentation of proteins and 
carbohydrates. Fermentation of proteins and carbohydrates, acetate 
and H2 gas are also generated via anaerobic oxidation of LCFA or 
acetogenic conversion of propionate, butyrate, and valerate. CH4 
is produced by both aceticlastic methanogenic cleavage of acetate 
and hydrogenotrophic methanogenic reduction of CO2 by H2. The 
specific chemical equations for these processes can be referred to the 
aforementioned R1–R12 [12,18,28]. 

As further described in section 3, the ADM1 model involves 
complex reaction kinetics and a multitude of simultaneous and 
sequential reactions, primarily classified as either biochemical or 
physico-chemical. Extra-cellular enzymes are assumed to typically 
catalyze biochemical reactions involving biologically-available organic 
substrates. All extra-cellular ADM1 biochemical reactions are assumed 
to adhere to empirically-based 1st-order rate law kinetics, and all 
intra-cellular ADM1 biochemical reactions are assumed to adhere to 

Monod-type substrate uptake kinetics. Substrate uptake reaction rates 
are proportional to the biomass growth rate and biomass concentration 
[13]. 

One of two empirical functions expresses pH inhibition for all 
bacterial groups. Non-competitive functions express H2 and free 
ammonia inhibition for acetogenic and aceticlastic methanogenic 
bacterial groups, respectively. Secondary Monod uptake kinetic 
equations are used to account for growth limitation when inorganic 
nitrogen in the form of either ammonia or ammonium becomes limited. 
Competitive uptake kinetic expressions account for consumption 
of butyrate and valerate by acetogenetic bacteria. Physico-chemical 
reactions are independent of microorganisms. These are instead 
assumed to be controlled by processes like those involving gas-liquid 
transfer and those involving ion association/dissociation (a.k.a. 
equilibrium), which are relatively faster than biochemical processes 
and can be expressed by algebraic, as opposed to differential, equations. 
Liquid-gas transfer processes are represented by the two-film theory-
based dynamic gas transfer equations. 

The ADM1 model has been widely applied and validated in 
simulating the anaerobic digestion of several organic wastes like 
industrial wastewaters [31], sludge from wastewater treatment plants 
[30,32], sewage sludge [33], black water from vacuum toilet [34], 
and olive mill solid wastes [35]. There are two types of ADM1 model 
applications: One involves applications of the standard model in a 
mixed tank as mandated by the ADM1 Scientific and Technical Report 
[13,36], frequently to monitor specific systems. The other involves 
application in theoretical analysis for new distributed parameters. 

Complex models like ADM1 are well suited for process simulation. 
However, they are substantially limited when applied for process 
control and optimization [37]. The ADM1 model assumes to simulate 
a constant-volume, completely-mixed system [13]. However, at 
larger-scales, it is difficult to encounter ideal mixing in any digester, 
and the actual complex flow behavior likely would limit ADM1 
model’s predictive accuracy. Furthermore, ADM1 model complexity 
leads to the need for many input parameters, ultimately resulting 
in a multitude of stoichiometric and kinetic equations. Parameter 
identification and manipulation of many equations can prove arduous. 
Depending on the substrate being digested, usually a small number 
of parameters significantly affect models’ outputs. Also, despite the 
adequate representation of relevant physical processes by ADM1 
model assumptions, many reactions can occur rapidly and not affect 
the overall process dynamics. 

Bio-chemical Kinetics 
Overview 

The theory of continuous cultivation of microorganisms has been 
previously used to mathematically represent biological treatment 
process kinetics [38,39]. Biological kinetics for many models are here 
based on the elementary microbial growth and substrate consumption 
rates which depend on a growth-limiting substrate concentration. 
Nurients are assumed to be substrates that are supplied in excess. The 
following equations are some common kinetic expressions describing 
anaerobic treatment processes: 

First order kinetic model [40]:

,max 0
,max

0 ,max1
= − − = =

− +
S

S
S SR

K S SdSb K S S
S S dt K t

µ     (1)

Grau et al. [41] kinetic model:

Complex particulate waste
 and inactive biomass (XC)

Carbohydrates (XCh) Proteins (Xpr) Fats (Xli) Inert soluble (Sl)

Sugars (Ssu)

Propionate
(Spro)

Butyarte (Sbu)
Valerate (Sva)

Amino acids (Saa)

Hydrogen (Sh2)Acetate (Sac)

Methane (Sch4)

Long chain fatty acids (Sfa)

Inert particulates (Xl)

Disintegration

Hydrolysis

Acidogenesis

Acetogenesis

Methanogenesis
76Death

4 5

1 2
3

Figure 2: Main pathways for ADM1 model [13] (1) acidogenesis from sugars; (2) 
acidogenesis from amino acids; (3) acetogenesis from LCFA; (4) acetogenesis 
from amino acids; (5) acetogenesis from butyrate and valerate; (6) aceticlastic 
methanogenesis; (7) hydrogenotrophic methanogenesis.
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max max 0

0 0 max

(1 )+
= − − = = SRT

SRT

S XS S btdSb S
S dt YS t

µ µ
µ

µ
             (2)

Monod kinetic model [42]:

max max

max

(1 )
( ) ( ) 1

+
= − − = =

+ + − −
S SRT

S S SRT

S XS K btdSb S
K S dt Y K S t b
µ µ

µ
µ

(3)

Contois kinetic model [43]:

max max

0

0 max

( )
(1 )

(1 ) ( ) 1

−
= − =

+ +
+

=
+ + − −

X X

X SRT

X SRT SRT

S XSdSb
K X S dt Y K X S

K YS btS
K YS bt t b

µ µ
µ

µ

	                (4)

Chen & Hashimoto kinetic model [44]: 

max max

0

0

max

(1 ) ( )
(1 )

( 1)(1 )

−
= − =

+ − +

+
=

− + +
SRT

SRT SRT

S XSdSb
KS K S dt KX YS

KS btS
K bt t

µ µ
µ

µ

	                  (5)

Haldane kinetic model [45]:

max= −
 + +  
 

n

S I

dS SB
dt Y SK S S K

µ
			                      (6)

where μ is the specific growth rate; μmax is the maximum specific 
growth rate; n is the Haldane index (n=1 or 2); S0 and S are the 
concentrations of the growth-limiting substrate in the influent and 
effluent for a continuous stirred tank reactor (CSTR) reactor at steady 
state, respectively; X is the microorganism concentration; KS,max is the 
maximum specific substrate use rate; b is thespecific microorganism 
decay rate; tSRT is the solid retention time (a.k.a mean cell residence 
time); Y is growth yield coefficient; μmax is the maximum specific growth 
rate; KX is Contois kinetic constant; K is the Chen and Hashimoto 
dimensionless kinetic constant; B is the concentration; KS is the half 
saturation coefficient; KI is the inhibition constant. 

These equations comprehensively represent the fundamental 
framework for AD process simulation [30]. Many kinetic models 
based on these equations, like ADM1 and Angelidaki et al. [12] 
model, were modified and applied to simulate different AD processes 
and predict their productivity [46-48]. For instance, the high level of 
agreement between such model prediction of CH4 production rate and 
experimental measurement data is revealed as a good curve fit with a 
confidence interval of 95% (Figure 3). Here the CH4 production rate 
(G) is estimated as [46]: 

0( )−
= msY S SG

θ
				                       (7)

where θ=V/Q=hydraulic retention time; Yms is the specific methane 
production; Q is the flow rate; V is the working volume of the digester. 

Rate-limiting approaches 

Construction of the aforementioned AD process kinetic models 
was generally based in literature on a rate-limiting approach. As 
previously explained in the introduction, AD involves four critical 
biological and chemical steps (hydrolysis, acidogenesis, acetogenesis, 
and methnogenesis) comprised of a sequence of reactions. Initial efforts 
to simulate dynamic AD processes relied on the assumption that one 
step was normally much slower than the rest and that a whole process 

could be adequately described by this step. This last slow step can be 
referred to as a rate-limiting, rate-controlling, or rate-determining 
step. The rate-limiting step of AD processes has also been assumed to 
depend on the temperature, substrate concentration and properties, 
as well as reactor configuration and loading rate [49]. For example, 
CH4 generation using organic substrates in tundra soil samples was 
simulated over a wide temperature range. Hydrolysis and acetoclastic 
methanogenesis were determined to be the rate-limiting steps between 
10–28°C and at 6°C, respectively [50]. 

Hydrolysis: Most AD rate-limiting models focused on the rate-
limiting hydrolysis of complex organic particulate material like sewage 
sludge [51]. Particulate organic material must be decomposed to 
solutes capable of being actively or passively transported across cell 
membranes before they can be microbially metabolized. There are two 
mechanisms to describe the hydrolytic process [13]: 

1.	 The microbes secrete into the bulk liquid enzymes that adsorb 
onto a particle or react with a soluble substrate [52]. 

2.	 The microbes adhere to a particle and consume soluble 
products released by reactions that were catalyzed by enzymes 
that they locally produced [53]. 

The following is a list of the hydrolysis kinetics models that were 
previously reviewed in literature [51]: 

1.	 The first order kinetics of lipid, protein, and carbohydrate 
degradation: The most conventional model to simulate 
hydrolysis involves a 1st364 -order rate law in terms of the 
degradable organic material concentration [51]:

= − =hyd
dS dPk S kS
dt dt

α 			               (8)	

Where P is the product concentration; S is the volatile solids (VS) 
concentration; khyd is the first order coefficient; and α is the VS-to-
product conversion coefficient;. The kinetic coefficients of the 1st-
order rate of hydrolysis for different substrates can be obtained from 
literature [51]. First-order kinetics disregards biodegradability-related 
processes and applies only when the rate-limitation is due to the 
particulate substrate surface. 

2.	 Disintegration, solubilisation, and enzymatic hydrolysis: 
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and the 95% confidence interval calculated by Equation (7) from Karim et al. 
[46].
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Hydrolysis of a soluble substrate can be described by Michaelis-
Menten kinetics as follows [13]: 

= =
+ +m

m m

dS S SkE V
dt K S K S

			                 (9) 

where S is the substrate concentration; E is the enzyme concentration; 
Vm=kE is the maximum hydrolysis rate; k is the maximum hydrolysis 
rate constant; and Km is the half-saturation rate coefficient. 

3.	 Biodegradability of complex substrates: A non-degradable 
fraction of a complex substrate was additionally included 
to account for substrate non-degradeability in the 1st-order 
kinetics [51]: 

0( )= − −
dS k S S
dt

β 				                  (10)

Where S0 is the initial substrate concentration and β is the non-
degradable fraction of the substrate. 

As an alternative to Equation (8), different reaction kinetics can be 
used to express complex substrate hydrolysis [51]: 

0( )
=

′ − +S

dS KS
dt K S S S 	 			                   (11)

where K is the maximum hydrolysis rate which is a function of 
the hydrolytic enzyme or biomass or concentration, and ′SK is a 
corresponding model coefficient. 

Equation (8) also can be modified as nth-order reaction kinetics 
[51]: 

0( )′= − −ndS k X S S
dt

β 				                   (12)

where X is biomass concentration; k’ is a rate constant; and n is a power 
index.

4.	 Surface-related kinetics and two-phase model of hydrolysis 
of particulate substrate: A surface-related hydrolysis-limited 
kinetic model that considers colonization of waste particles by 
hydrolytic bacteria is represented by the following [53]: 

1
′=

+ +m
S

X S
X K S

βρ ρ
β 				                   (13)

where ρ and ρ’m are the current and maximum hydrolysis rates, 
respectively; S is the volatile solid waste concentration; X is the 
concentration of hydrolytic (acidogenic) biomass; β is the equilibrium 
constant that is equal to the adsorption: desorption rate constant ratio 
in the Langmuir function; and KS is the half saturation coefficient for 
the volatile solid waste concentration. In addition, microorganisms 
that have adhered to a particle will be able to consume soluble products 
released by the reactions catalyzed by the enzymes that they locally 
produced. Substrate and biomass saturation kinetics are accounted 
for by a single parameter in the following Contois model [53]: 

= =
+ +

m m
X X

SS XX X SK X S K X
ρ ρ ρ 			               (14)

where ρm is the specific maximum hydrolysis ratesand KX is the half 
saturation coefficient for the substrate: biomass concentration ratio 
S/X. The differential equations describing the dynamic change in time 
of substrate, biomass, and product concentrations are as follows [53]: 

( , ) ( , ) ( , )= − = =
dS dX dPS X Y S X S X
dt dt dt

ρ ρ αρ 	                (15)

Acetogenesis and Methanogenesis: The formulas pertaining to 

rate-limiting hydrolysis can be analogously applied to acetogenesis 
and methanogenesis when these processes are instead considered rate 
limiting steps, especially for AD involving complex substrates at a high 
organic loading [51] Occuring after hydrolysis, acidogenesis is normally 
the most rapid step during AD of complex organic material [40,51]. An 
acetogenesis rate-limited kinetic model was developed [54]. Here, after 
165°C treatment with electric heater, the results of AD processing of 
complex, waste, activated sludge substrate having an organic loading 
of 0.5 g COD/g VS of inoculum revealed that acetate and propionate 
degradation steps could also be viewed as rate-limiting steps [54]. 

Modeling efforts often view methanogenesis as the rate-limiting 
step because methanogenic bacteria have the highest sensitivity and 
lowest growth rates compared to those in the nonmethanogenic 
groups [5,55]. When substrates were overloaded in one digester, 
high VFA product concentrations inhibited polymer hydrolysis and 
acidogenesis and resulted in methanogenesis, as opposed to hydrolysis, 
becoming the overall AD rate-limiting step [56]. The Andrews rate-
limited kinetic model (see Eq.6 (n=1)) disregarded hydrolysis and 
acidification as rate-limiting and also assumed only a rate-limiting 
acetoclastic methanogenesis reaction step where CH4 was produced 
from acetic acid [10]. The Andrews model dynamically simulated 
the change in biomass of an assumed single bacterial population and 
acetic acid substrate via mass balances for an assumed continuous 
stirred tank reactor (CSTR). The Andrews model assumed a constant 
pH. Mass transfer considerations were limited to the transport of CO2 
across the gas-liquid interface, and the dissolved CO2 fraction of total 
CO2 was estimated by bicarbonate dissociation equilibrium and ion 
charge balances. In another study, at different operational modes, 
methanogenesis was also demonstrated to be rate-limiting in the 
Accumulation System (AC) system, while hydrolysis was rate-limiting 
during batch digestion [57]. Readily hydrolyzed carbohydrate was 
pulsed in to ensure that acetogenesis and methanogenesis were rate-
limiting, [58].

Other researchers have also viewed the acetoclastic methanogenic 
process as rate-limiting step [10]. For example, a specific growth rate 
assuming Monod kinetics with substrate inhibition was expressed as 
follows: 

max

1
=

+ +S

I

K I
S K

µµ
				                    (16)

where μ is the specific growth rate; μmax is the maximum specific growth 
rate; KS is the half saturation coefficient; KI is the inhibition constant; 
S is the concentration of growth-limiting substrate; I is the inhibitor 
concentration. 

This model has served as template for many others, even though 
it has never been experimentally validated. The arduous task of 
determining kinetic data to describe the anaerobic acetate-to-methane 
conversion has frustrated the implementation of this model. Variability 
in the obtained maximum growth rates still occurred in experiments 
involving identical cultures of Methanosarcina barkeri, strain 227, and 
the substrate acetate [59]. This might be the reason why there were fewer 
rate-limiting model studies in methanogenesis than that in hydrolysis. 
The rate-limiting model assumption that biogas generation rate can be 
predicted by one single process step during the fermentation process 
leads to simple and readily usable models [60]. 

However, the rate-limiting model may at times over-simplify in 
that the limiting step is influenced by operating conditions that change 
with time and are difficult to keep constant. Intermediates fermentation 
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products like volatile fatty acids (VFA), which can be used as indicators 
for digester stability, become difficult to estimate when only a rate-
limiting step (e.g. hydrolysis) or single bacterial organism (e.g., 
acetoclastic methanogens) are accounted for. 

Anaerobic Digestion Reactors 
Different reactor types are used in the AD system. The vertical 

continuously stirred tank fermenter is the most conventional reactor 
set-up used for wet fermentation and is implemented in Germany in 
approximately 90% of its modern biogas plants [21,61]. However, it 
is becoming apparent that in many applications the common stirred 
tank is not the optimum AD configuration. Limitation of this reactor 
include wash-out of unreacted solids and active microorganisms at 
higher loadings, difficulty in achieving complete mixing, high energy 
requirements associated with mixing, and disruption of microbial 
consortia by mixing. Batch and plug flow reactors are common 
configurations that can alternatively be applied in AD systems. Several 
innovative digester configurations currently under development aim 
to increase process stability and net energy output, simplify design and 
operation, and improve economics. These digesters include the upflow 
anaerobic sludge blanket (UASB), the attached film, the leach bed, the 
membrane bioreactor (MBR) and the fluidized bed [62-65]. 

Black Box Models to Simulate Anaerobic Digesters 

The complex biological AD process of digesters which involves 
decomposition by several important microbial populations, is still 
regarded as a “black-box” because the great efforts in the past that were 
devoted towards understanding and controlling it have still not led to 
the development of reliable nonlinear mathematical models [66]. 

Unlike nonlinear estimation approaches, artificial neural networks 
advantageously do not need previous knowledge concerning the inter-
relationships between key variables. Specification of the network 
architecture and an adequate amount of consistent input data are all 
that is required. In one previous instance (Figure 4) [67], the neural 
network consisted of five critical parts; inputs and outputs, database 
and pre-processor, fuzzy system generator, fuzzy inference system, 
and an adaptive neural network representing the fuzzy system. Input 
and output variables were chosen or formulated from those that are 
routinely used to define the AD system. The model relied on a database 
that includes system performance data that is usually collected from 
regularly monitored variables. 

Currently available soft-computation artificial neural networks 
techniques which do not need to consider mechanistic reactions can 
be applied to biological wastewater treatment processes [68-73]. For 
example, effluent that originated from municipal sewers or other 
residential areas was defined by only the four input effluent properties 
[74]. These were Suspended Solids (SS), Biochemical Oxygen Demand 
(BOD), Chemical Oxygen Demand (COD), and true effluent color. 
Such inputs were processed at a wastewater treatment plant to achieve 
the necessary outputs stipulated by the regulatory effluent standards. 
Compared to other more comprehensive studies, this particularly 
sparse and incomplete study of the output effluent quality was, to save 
money, conducted only to comply with the regulatory standards and 
did not appropriately predict long-term effluent quality trends via 
numerical models involving mechanisms, etc. models.

In another example, two training algorithms (Artificial Neural 
Network (ANN) and adaptive neuro fuzzy inference system (ANFIS)) 
were applied to predict chemical oxygen demand (CODeff) and 
suspended solids (SSeff) in effluent from a hospital wastewater treatment 

plant. ANFIS’s platform was composed of both ANN and fuzzy-logic 
including if–then rules and linguistic expression of Membership 
Functions (MFs). Its predictive power was high based on Mean 
Absolute Percentage Error (MAPE), correlation coefficient (R), Mean 
Square Error (MSE), and Root Mean Square Error (RMSE) values. 
The training results and predictions using ANFIS2-1 and ANN2-1are 
presented in Figure 5a and b, respectively. 

The advantages of artificial neural network are that they require 
no knowledge of the reaction mechanisms and experimental 
measurements for a multitude of parameters to monitor the operating 
conditions and performance of an AD treatment process at a large-
scale facility. However, the disadvantage of this method is that it does 
not enable digester design and scale up and requires a high and diverse 
level of input-output relationships to train the method for real-world 
operation.

Phenomenological models for simulating anaerobic digesters 

Ideal Models (CSTR and PFR): Model equations have been 
constructed for various reactor configurations, most commonly 
Continuous Stirred Tank Reactor (CSTR) and Plug Flow Reactor 
(PFR), from fundamental kinetics and biomass mass balance 

Anfis Model

Anfis Model with two - valued
phase vector and
history of 5 days

Anfis Model with three - valued
phase vector and
history of 5 days

(a)    Input Variables

(b) Inputs         InputMF’s                       Rules               OutputMF’s               Output

CH4

Qinf

CODeff

CH4

Phase Vec.
(Two - valued)

Phase Vec.
(Three - valued)

History of 5 days

History of 5 days

Qinf Output Variable

CODeff

CODeff

CODeff

Figure 4: Schematic diagram of (a) adaptive network-based fuzzy inference 
system (ANFIS) models with all input variables and (b) input–output mapping 
structure of ANFIS model with only on-line input variables [74].
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relationships. Angelidaki’s comprehensive model [12] and ADM1 
model [13] assumed CSTR reactor configurations, reducing the 
computational requirements when considering the complex AD 
kinetics. CSTR mixing intensity was also evaluated via a distributed 
model that was developed to simulate anaerobic digestion of solid 
waste by exploring the balance between the rates of polymer hydrolysis 
and methanogenesis during the anaerobic conversion of rich and lean 
wastes in batch and continuous-flow reactors [14, 56,75]. 

Mathematical models for Anaerobic Fluidized Bed Bioreactors 
(AFBR) were developed specifically as CSTR [76], plug-flow reactor 
[77] and a plug flow with dispersion reactor configurations [78]. AFBR 
models assumed the CSTR’s lack of axial spatial gradients in substrate 
and product concentrations because of their traditionally high-
recirculation rates. However, biofilm thickness and heterogeneity could 
increase, and colonized media density could significantly decrease 
during continuous operation. This may result in large decreases in 
AFBR recycle ratio or changes in bed characteristics, invalidating the 
CSTR model assumption. Therefore, numerous models for fluidized 
bed reactors involving a plug-flow regime with axial dispersion 
were developed to account for substrate and product concentration 
gradients in AFBRs [79]. 

Other high-rate digester models were also developed [80], 
including, for example, a dynamic model for the anaerobic digestion 
of glucose in the Periodic Anaerobic Baffled Reactor (PAFB) [81]. This 
model assumed that a four-compartment PABR was hydraulically 

equivalent to four CSTRs in series. In another model, an anaerobic 
moving bed reactor was simulated by constructing a material balance 
within the biofilm, incorporating a flow rate term into a Monod growth 
kinetic equation, and applying Fick’s law of molecular diffusion [82]. 
Furthermore, a leach-bed reactor, made from compacted municipal 
solid waste (MSW), and comprising large and small pores, was 
simulated by coupling a moisture-flow model with a biological 
reaction and a physico-chemical equilibrium model [83]. The non-
uniform water flow through the heterogeneous leach bed was instead 
considered high-velocity channeled flow of leachate through narrow 
pore channels and inter- and intra-particle Darcian flow percolating 
through small pores. 

Non-ideal models: Various reactor models for high rate anaerobic 
digesters were constructed by combining properties of both CSTR and 
PFR configurations to account for non-idealities. For instance, the 
different zones of a UASB reactor have been viewed as CSTRs or PFRs 
with dead volumes and bypass flows between them. The zone flows 
primarily were affected by biomass concentration and properties. In 
one study, a UASB reactor was split into the three compartments of 
sludge bed, sludge blanket, and settler [84]. CSTR liquid flow in the 
sludge bed and the sludge blanket compartments and PFR liquid flow 
in the internal settler were assumed. In another case, a UASB reactor’s 
sludge bed and blanket were hydrodynamically modeled as a non-
ideal CSTR in series by combining an ideal CSTR configuration with 
a dead zone and a bypass flow. Meanwhile, the UASB’s settler above 
the sludge blanket was hydrodynamically modeled as a dispersed plug 
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Figure 5: Prediction results of CODeff. (a) ANFIS2-1 and (b) ANN2-1 [74].
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flow reactor (PFR) (non-ideal PFR) [85]. Additionally, the UASB was 
split into two regions with ideal mixers, and a recirculation tank was 
viewed as a third ideal 551 mixer because numerous hydrodynamic 
studies previously determined that the sludge bed and sludge blanket 
were definable as separate, well-mixed flow regions [86].

CSTR and PFR models have been extensively applied to the design, 
scale-up, and optimization of commercial reactors. Non-idealities 
were considered via a multitude of modifications, including tanks-in-
series and axial-dispersion models. However, these did not adequately 
simulate reactor performance, which was influenced not only by vessel 
residence time for a fluid element, but also by its surroundings when 
transported from inlet to outlet [87]. Quantitative data regarding 
digester flow pattern were required for sufficient designs so that the 
effective mixing strategies can be operated to avoid recirculation (back-
mixing), short circuits, and dead zones. 

Computational Fluid Dynamics (CFD) Models: Mixing can 
promote optimum digester performance by enhancing intimate 
contact between active microorganisms and feed sludge substrates 
[88]. Computational fluid dynamics (CFD) simulation software allows 
numerical simulation of mixing effect in a digester [89]. CFD can be 
used also to predict anaerobic digester velocity profiles, rates of energy 
dissipation, concentrations, and flow streamlines based on specified 
digester geometry, feed location, physical properties, and operating 
conditions. In the past decade, CFD has been used to predict digester 
flow patterns of wastewater treatment units like wastewater ponds, 
lagoons, and tanks.

CFD was first applied to the design of wastewater ponds [90,91]. 
The single-phase Euler approach and finite volume numerical method 
were commonly used. For this, the flow field was calculated in four 
different ponds types-rectangular facultative, inlet baffle, outlet 
baffle, and aerates. It was determined later that current designs 
and operating models pay little attention to the micro-scale effects 
within the treatment ponds. The effects of inlet formation and basin 
inlet geometry were additionally simulated, and 2-D CFD models 
qualitatively demonstrated that the waste pond flow fields were most 
influenced by inlet geometry. Shilton [92] and Shilton et al. [93] sought 
to complement and extend on such research of Wood et al. [91] by 
presenting the results of a 3-D, turbulent model. 

CFD has also been applied to the study of lagoons, another 
common form of simple digester. Salter et al. [94] focused on the 
hydraulic regime in facultative lagoons and conducted two consecutive 
simulations with and without baffles; the first simulation established 
steady-flow conditions, and the second simulation used a chemical 
species transport model to get the Residence Time Distribution (RTD). 
Baleo et al. [95] employed two different numerical approaches to obtain 
lagoon residence time distributions. The first consisted of solving a 
transport equation for the local fluid mean age via Eulerian reference 
frame. The second consisted of injecting a virtual particle stream and 
measuring the time between start injection and end of trajectory via 
Lagrangian reference frame.

Tanks are relatively small compared with ponds and lagoons. 
Small size of tank digesters permits the use of a more flexible mixing 
strategy to ensure effective mass and heat transfer. Wu and Chen [96] 
accounted for slurry circulation to obtain flow patterns in lab-, pilot-, 
and commercial-scale digesters and concluded that power input per 
unit digester volume logarithmically increased for scale-up digesters. 
Hoffmann et al. [88] used CFD to model mechanical mixing by an 
A-310 impeller in a low-solid digester (TS<5%) that was processing 

animal manure. Animal manure was then considered to be a Newtonian 
fluid with constant viscosity. The simulation of mechanical mixing 
was further extended to digestion of animal manure with total solids 
content exceeding TS>10% [97]. If the high-solids digester requires 
more efficient mixing, mechanical mixing will be the most optimal way 
to keep substrate in close contact with microorganisms [98]. 

Despite the efforts to apply the concept of non-Newtonian fluid in 
single-phase models during CFD simulation [99,100], it is important 
to note that the very complex flow behavior of mixed liquor or 
waste slurry in digesters also involves segregation and aggregation 
phenomena [101]. These may significantly impact the interactions 
between active microorganisms and feed sludge, the microorganism 
retention, and, ultimately, biogas productivity. Therefore, multi-phase 
non-Newtonian models may be necessary to adequately simulate the 
complex flow behavior of heterogeous biomass particles in AD sludge, 
as they differ tremendously from flows of smooth spherical particles in 
Newtonian fluid. Compared to single-phase Newtonian fluid models, 
multi-phase non-Newtonian fluid models have not been extensively 
developed. This has likely held back the understanding, optimization, 
and commercialization of AD processes [102]. Despite their added 
complexity and challenges, development and application of such 
models represent a significant opportunity to advance the field of 
anerobic digestion. 

Conclusions 
This review presents a compilation and discussion of the various 

models that have been developed to describe Anaerobic Digestion 
(AD) processes so as to optimize and enhance design and operation 
of waste treatment plants. The relatively simple and implementable 
rate-limiting models were first highlighted. However, their diversity 
and customized development for applications involving specific 
substrates limited their widespread implementation. It was found that 
identification of rate-limiting steps at different digester conditions was 
difficult for AD processes involving complex substrates. It was also 
found that identification of intermediate fermentation products was 
very important to assess the capability of digesters. 

ADM1 represents the currently most comprehensive model of 
the AD process which serves as a basis for future development of 
kinetics models. Its complex model structure still welcomes additional 
improvements. For example, understanding further the intra-cellular 
metabolic pathways, mechanisms, and interactions between anaerobic 
microorganisms at the micro-scale can lead to an improved model that 
better represents real-world AD processes. In addition, the ADM1 
model can be further modified for a special anaerobic process involving 
different metabolic pathways. 

Because of the complex reaction mechanisms in AD, black box 
models like artificial neural networks were applied to the simulation of 
wastewater plants. As these models disregarded reaction mechanisms, 
they would be more suitable to control, rather than design and scale-
up, AD processes. CSTR and PFR models provided the fundamental 
basis for applying kinetics to design different types of digesters. An axial 
dispersion model was further developed to account for non-idealities. 

Fluid dynamic studies are needed to provide a better understanding 
of local transport phenomena inside digesters to improve their design 
and predict their performance. CFD was applied to the simulation of 
anaerobic digesters to study the effects of mixing. CFD simulation of AD 
processes can further be augmented with inclusion of comprehensive 
kinetics [103], although the extremely complex nature of these would 
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likely limit progress in the near-term. It is essential that researchers 
developing and conducting in-silico model simulation communicate 
effectively with those conducting physical experimentation. Doing 
so would mutually benefit both groups and help advance the field of 
mathematical modeling in anaerobic digestion. 
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