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Introduction
Epoxy resins are among the most important thermosetting 

polymers and are used extensively as adhesives in many applications 
including aerospace [1]. The recent development of epoxy resin-
based renewable organic materials has attracted a lot of attention [2]. 
It is also noteworthy that, cardanol-based novolac resins have been 
investigated for use as modifiers and curing agents for commercial 
epoxy resins improving toughness and other mechanical properties 
[3]. The mechanical properties of epoxy resin are affected by the ratio 
of curing agent to epoxy resin; this mixing ratio has very important 
practical implications. Recently, composite materials have been 
developed for applications in severe environments, such as cryogenic 
and high temperatures, water repellency, corrosion resistance and 
ultraviolet radiation [4,5]. The “microdroplet pull out test” has been 
developed and used to evaluate interfacial properties. In this test a 
single fiber is embedded in a microdroplet (40-300 μm diameters) of 
the polymer. The interfacial shear strength (IFSS) is calculated using 
the measured pull out force and the contact area between the fiber 
and the microdroplet [6,7]. In this study, the optimal conditions for 
glass fiber/epoxy composites were investigated using two different 
composite matrices (bisphenol-A type epoxy and novolac type epoxy). 
TGA and DSC instruments were used to investigate thermal stability 
and glass transition temperature. AN UTM was used to facilitate 
measurements of tensile and compressive properties of the resins and 
their composites at room and high temperatures. The microdroplet 
pull-out test was used to evaluate interfacial properties between the 
resins and glass fibers.

Experimental
Materials and specimens

Novolac type epoxy (YDPN-638, Kukdo chemical Co., LTD, 
Korea) and bisphenol-A type epoxy (YD-128, Kukdo chemical Co., 
LTD, Korea) were used as epoxy resin matrices. Acid anhydride (KFH-
1089, Kuk do chemical co, LTD, Korea) was used as the hardener. 
Glass fiber (SE1500, Owens Corning, USA) was used for composite 
reinforcement.

Methodologies

The epoxy resins were diluted with acetone, and these diluted 
resins were coated on the glass fibers at 30 wt% by hand lay-up. Solvent 
evaporation and pre-curing were performed in an oven at 120°C for 
7 minutes. Glass fiber/epoxy composites were fabricated using these 
prepreg using a hotpress (1401, Tetrahedron, USA) at 80°C at 1.5 Kgf/
cm2

 for 1 hour followed by 120°C at 3 Kgf/cm2
 for 4 hours. An UTM 

(H1KS, Lloyd, USA) was used to measure mechanical properties 
according to ASTM D-638 (for tensile testing) and ASTM D695 (for 
compressive testing) at room and high temperatures, at a test speed 
of 1mm/min. The microdroplet test was performed to measure the 
interfacial (IFSS) properties using the equation:

f

FIFSS
D Lπ

=                                        			                  (1)

Where Df  and L are the diameter and length of fiber embedded in 
the matrix, resp.

TGA (Q50, TA instrument, USA) and DSC (Q20, TA instrument, 
USA) were used to investigate the chemical construct and glass 
transition temperature of epoxies with different epoxy resins. The 
measuring temperature range was from 25°C to 250°C, with a 
temperature increase rate of 10°C/min.

Results and Discussion
Thermal properties of the epoxy resins

Figure 1 shows TGA and DSC results for the two epoxy resins as: 
(a) the degrees of thermal degradation and (b) determination of the 
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glass transition temperatures. The thermal properties of novolac type 
epoxy were generally better than those of the bisphenol-A type epoxy 
resin. The thermal degradation of the novolac type epoxy started at 
approximately 420°C whereas it started at approximately 370°C for the 
bisphenol-A type epoxy. The glass transition temperature of novolac 
type epoxy was higher at roughly 169°C than it was for bisphenol-A 
type epoxy resin at approximately 120°C.

Mechanical properties of epoxy resin and composites

Figure 2 shows the tensile and compression test results for 
composites of the two epoxy resins. Figure 3 shows a summary 
the strength results taken from different mechanical tests (tensile, 
compressive and flexural) on glass fiber/epoxy composites with the 
different epoxy resin matrices properties). Clearly, the novolac type 
epoxy composites had superior strength under all three modes of 
loading.

Interfacial properties between glass fiber and epoxy resins

Figure 4 shows microdroplet test results of the different epoxy 
resins on glass fibers. When the results of these tests are used in 
equation (1) it is seen that using the novolac epoxy resin exhibited 
significantly larger interfacial shear strength than did bisphenol-A type 
epoxy resin. The shape of the microdroplets for the different epoxy 
resins was also examined using a reflective microscope. Figure 5 shows 
photographic results of this examination. The shapes of the novolac 
resin microdroplets on the glass fibers were narrower than those of the 
bisphenol-A epoxy resin. The visual differences in the static contact 

angle between the glass fiber and the two epoxy resins, that is evident 
in these photographs is consistent with these differences in shape.

Interfacial properties between glass fiber and epoxy resins

Figure 6 shows molecular structural modeling for the two different 
epoxy resins showing their functional groups. There are a number of 
hydroxyl groups and benzene rings in novolac type epoxy whereas the 

 

Figure 1: Thermal properties of epoxy resin: (a) TGA; and (b) DSC.

 

 

Figure 2: Mechanical properties of epoxy resin: (a) 
tensile test; and (b) compressive test.

Figure 3: Mechanical Properties of GFRP as different 
epoxy resin (tensile, compressive; and flexural tests).
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Figure 4: Microdroplet pull-out test between epoxy resin and glass fiber.

 Figure 5: Observation of microdroplet: (a) bisphenol A type; and (b) novolac 
type.

 

 Figure 6: Schematic plot of chemical structure as different epoxy resin: (a) bisphenol A type; and (b) novolac type.
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bisphenol-A type epoxy has fewer hydroxyl groups along with several 
benzene rings. When novolac epoxy resin makes contact with a glass 
fiber, hydroxyl groups on the surface of novolac and glass fiber form 
hydrogen bonds and it leading to improvement of interfacial properties. 
In addition, the novolac epoxy resin contains a number of the amount 
of benzene rings bringing about a unidirectional alignment of novalac 
epoxy to resulting in the improvement in mechanical properties of 
composites. On the other hand the bisphenol-A type epoxy has fewer 
hydroxyl groups and benzene rings resulting in less mechanical and 
interfacial properties.

Conclusions
The optimal conditions for glass fiber/epoxy composites were 

investigated using two different composite matrices (bisphenol-A type 
epoxy and novolac type epoxy). The thermal properties of novolac type 
epoxy were generally better than those of the bisphenol-A type epoxy 
resin. The glass transition temperature of novolac type epoxy was 
higher than it was for bisphenol-A type epoxy resin. The novolac type 
epoxy and composites had superior strength under all three modes of 
loading. The novolac epoxy resin with glass fiber exhibited significantly 
larger interfacial shear strength than did bisphenol-A type epoxy resin. 
When novolac epoxy resin makes contact with a glass fiber, hydroxyl 
groups on the surface of novolac and glass fiber form hydrogen bonds 
leading to improvement of interfacial properties. In addition, the 
novolac epoxy resin containing the amount of benzene ring brings 
about the unidirectional alignment of novalic epoxy resulting in the 
improvement of mechanical properties of the composites.
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