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Introduction
Nerve injury including traumatic brain injury (TBI) is a major 

public health concern in industrialized countries. It has been 
estimated that 1.4 million people sustain a TBI annually and 5 million 
people are disabled in the United States. Young children, adolescents, 
and the elderly, predominantly male, exhibit the highest rates of 
TBI [1]. The treatment of nerve injury subjects and improving their 
outcomes has still not been clarified [2].

Nerve injury results in the formation of contusions, neuronal 
apoptosis, and axonal tract damage. Promoting neurite outgrowth 
and protecting neurons from apoptosis are important factors in the 
treatment of nerve injury [3-6]. It has been shown that the neurotrophic 
factors NGF, BDNF, NT-3, and NT-4/5 have neuroprotective and 
neuronal differentiation abilities [7], and are attracting attention as 
medicines for TBI [8]. Previous studies have demonstrated that NGF 
promoted electrophysiological, and histomorphological parameters 
and enhanced axonal regeneration following nerve injury in vivo [9-
11]. The specific receptors of the neurotrophic factors NGF, BDNF 
plus NT-4/5, and NT-3 are TrkA, TrkB, and TrkC, respectively. These 
Trk family members are membrane-spanning receptors on the cell 
membrane of neurons [12]. 

Intracellular signaling pathways contain several protein 
phosphorylation cascades and at least three signaling pathways 
have been identified downstream of Trk receptors: the Ras/mitogen-
activated protein kinase (MAPK) pathway, phosphatidylinositol 
3-kinase (PI3-K)/Akt pathway, and PLC-gamma pathway [13];
however, the delivery of exogenous neurotrophic factors is the greatest
obstacle for their therapeutic application since neurotrophic factors
are large polypeptide molecules that do not penetrate the blood-
brain barrier (BBB) and are easily metabolized by peptidases when
administered peripherally.

Recently, low-molecular-weight compounds that can mimic 
the function of neurotrophic factors and act as substitutes for their 
clinical use as an alternative approach were identified. Especially, 
the articles on the role of low-molecular-weight compounds in the 
nerve cells using PC12 cells are increasing. PC12 cells, a clonal cell 
line derived from a rat pheochromocytoma, have served as a model 
for studying the molecular mechanisms of neurotrophic activities in 
nerve cells.

In this review, we present recent topics regarding low-molecular-
weight compounds with neurotrophic activity in PC12 cells and 
neurons.

Natural Products and Neurotrophic Activities
Natural products may harmonize very well for the treatment 

of neuronal injury [14-19]. Recently, many compounds from 
natural sources were demonstrated to possess neurotrophic and 
neuroprotective abilities [20]. Current research has also confirmed 
the role of natural products in enhancing the neurite outgrowth 
activity of NGF in various experimental models [21].

Carnosic acid (CA) is a phenolic diterpene found in the dietary 
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herb rosemary (Rosmarinus officinalis L.) (Figure 1) that exerts 
antioxidant properties by acting as a radical scavenger [22,23]. 
Previously, it was demonstrated that CA functions as a peroxisome 
proliferator-activated receptor g (PPARg) agonist or 5-lipoxygenase 
inhibitor in mammalian cells [24,25]. However, the role of CA in 
nerve cells is still unknown.

Recently, it was reported that CA stimulates NGF gene expression 
through an NF-E2-related factor 2 (Nrf2)-dependent pathway and 
induces NGF production in astroglial cells [26,27]. Nrf2 is a CNC-
bZip transcription factor that plays a key role in redox regulation 
and drug metabolism [28,29]. Previous reports have revealed that 
Nrf2 is activated by Reactive Oxygen Species (ROS) and exogenous 
and endogenous electrophiles, such as sulphoraphane and 
6-methylsulfinylhexyl isothiocyanate. Moreover, CA can cross the 
BBB and attenuate middle cerebral artery occlusion (MCAO)-induced 
neuronal cell death by upregulating the expression of antioxidative 
Nrf2 target genes, such as HO-1 [30].

In PC12 cells, it has been shown that CA promotes neurite 
outgrowth and CA-activated Nrf2-induced p62/ZIP expression is 
essential for the neuronal differentiation of PC12 cells. Furthermore, 
it has been reported that CA-activated MAPK 1/2 and PI3-K, 
independent of Nrf2 activation and the activation of these kinases 
leads to the enhancement of Nrf2 accumulation in CA-mediated 
neuronal differentiation [26]. In this way, it is thought that Nrf2 
contributes to CA-induced neuronal differentiation via the induction 
of p62/ZIP expression. 

In addition to the effect on neurite outgrowth, CA exhibited 
neuroprotective activity against glutamate/ oxidative stress and 
cerebral ischemia both in vitro and in vivo. Previous reports revealed 
that CA activates the keap/Nrf2 transcriptional pathway by binding 
to specific keap1 cysteine residues, thereby protecting neurons from 
oxidative stress and excitotoxicity [30-32]. 

From these findings, it is thought that CA may be a treatment for 
nerve injury. However, the detailed molecular mechanism by which 
CA enhances NGF production and the roles of neurotrophic activities 
in neurons remain unknown. A detailed analysis is expected in the 
future. 

Luteolin (3’,4’,5,7-tetrahydroxyflavone), which is a natural 
flavonoid that exists in several types of vegetables, fruits, and medicinal 
herbs also exhibits neurotrophic activity (Figure 2). Luteolin is an 
ingredient of rosemary, similar to CA. In the mammalian Central 
Nervous System (CNS), it has been shown that luteolin can permeate 
through the blood-brain barrier (BBB), show anti-amnesic effects 

against the toxicity of amyloid in mice, and attenuate scopolamine-
induced amnesia in rats [33,34]. 

In neurite outgrowth, Lin et al. [35] suggested that luteolin 
promotes neurite outgrowth through the activation of MAPK, PKC 
and cAMP/PKA signaling pathways in PC12 cells. They also reported 
that this neurite outgrowth induced TrkA- and EGFR-independent 
signaling pathways [35,36]. 

For neuroprotective activity, luteolin has been found to possess 
anti-inflammatory and neuroprotective activities in microglia 
[37] and attenuate the neurotoxicity induced by peroxide [38], the 
neurotoxic agent N-methyl-4-phenyl-pyridinium (MPP+) [39], and 
amyloid beta protein [40]. Furthermore, luteolin protects PC12 cells 
from serum withdrawal-induced oxidative stress through Nrf2-
mediated transcriptional activation of HO-1 [35]. These findings 
demonstrate the possibility that luteolin as well as CA may be useful 
in the treatment of nerve injury.

Similar to the effects of neurotrophic factors, cyclic AMP (cAMP) 
can also promote neurite outgrowth and neuroprotective activity 
either on its own or via the activation of MAPK and cyclic AMP-
dependent protein kinase (PKA) in nerve cells [41]. Previously, it was 
shown that intracellular cAMP protects against oxidative stress when 
used alone and in association with the neurotrophic factors, NGF 
and EGF in PC12 cells [42]. In addition, it has also been reported that 
the cAMP analogue dbcAMP promotes neurite outgrowth in human 
neuroblastoma SH-SY5Y cells and PC12 cells [43,44]. Furthermore, 
we have reported that treatment with dbcAMP leads to the expression 
of immediate early genes (IEGs), including c-fos and Nur77, as does 
treatment with NGF in PC12 cells. We also observed that the cAMP-
PKA-Nur77 pathway is essential for the induction of differentiation 
by dbcAMP in PC12 cells and their expressions are regulated via the 
acetylation of histone H3 [44]. It is thought that detailed studies on 
low-molecular-weight compounds with neurotrophic activity will be 
necessary for advancing this field. However, the detailed mechanisms 
of cAMP/PKA have not yet been fully elucidated. 

In CNS injury models, several studies have demonstrated that 
the restoration of cAMP levels improves the outcome. In spinal cord 
injuries, the application of rolipram to inhibit the degradation of 
cAMP promotes axon sparing and results in locomotor improvements 
[45,46]. Similarly, rolipram improves neuronal survival in the 
hippocampus and hippocampal-dependent learning in transient 
global ischemia [47-49]. 

However, it has been reported that rolipram is characterized for its 
emetic and other problematic effects, and the development of a cAMP 
activator other than rolipram is expected.
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Figure 1: Structure of Carnosic acid.
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Figure 2: Structure of Luteolin.
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Forskolin, one of the natural products, is a cAMP activator that 
is used to raise the level of cAMP. Forskolin also plays a useful role 
in neurite outgrowth and neuroprotective activity. Forskolin is a 
labdane diterpene that is produced by the Indian Coleus plant (Figure 
3). Moreover, it is also known that forskolin is a BBB permeant.

Previously, it was shown that the forskolin induced neurite 
outgrowth of PC12 cells is mediated by the activation of the PKA 
signaling pathway and synergistic activation of the ERK signaling 
pathway [43,50]. 

On the other hand, Jin et al. [41] suggested that a low concentration 
of forskolin is closely related with the cAMP-induced protective 
function against L-DOPA-induced cytotoxicity and that a high 
concentration of forskolin induces the cAMP-mediated apoptotic 
process, which enhances L-DOPA-induced cytotoxicity in PC12 cells.

These findings reveal the possibility that forskolin may be a useful 
tool for the treatment of nerve injury. A detailed investigation is 
expected in the future.

The Post-Transcriptional Regulation of Gene 
Expression: MicroRNAs and the Acetylation of Non-
Histone Protein

The post-transcriptional regulation of gene expression plays 
critical roles in neurotrophic activities including neurite outgrowth 
and neuroprotective activity. MicroRNAs (miRNAs) form part of 
the post-transcriptional machinery. miRNAs are a class of small, 
noncoding RNAs of 21-23 nucleotides that regulate gene expression 
at the posttranscriptional level by binding to the mRNA of protein 
coding genes [51]. It has been reported that miRNAs are involved in 
several biological processes, such as development, morphogenesis, 
cell proliferation, cell differentiation, and apoptosis [52]. In the 
mammalian CNS, several miRNAs are specifically transcribed 
and enriched and may play important regulatory roles in neuronal 
development and brain function [53-55]. A previous study revealed 
that miR-132, an miRNA that is enriched in mammalian brain 
tissue, could be induced by neurotrophic factors and that this could 
represent a mechanism for fine-tuning protein expression following 
neurotrophic action [56,57].

Recently, it was reported that miR-132 modulates luteolin-induced 
neurite outgrowth in PC12 cells. Furthermore, it has been revealed 
that the cAMP/PKA- and MAPK-dependent CRE binding protein 
(CREB) signaling pathways are involved in the luteolin-mediated 
miR-132 expression and neuritogenesis of PC12 cells [36]. CREB is 
a transcription factor that binds to the cAMP-responsive element 
(CRE), a consensus sequence found in the promoter regions of many 

target genes. It has been reported that miR-132 is induced by CREB 
and is involved in the modulation of dendritic morphology, neurite 
outgrowth, synaptic plasticity and neuroprotection [56,58-60]. 
Therefore, it is thought that miR-132 also modulates a lot of CREB-
regulated genes in nerve cells.

The relationship between CA-induced neurite outgrowth and 
neuroprotective activity, and the regulation of miR-132 has not yet 
been clarified. Recently, it was revealed that CREB-binding protein 
(CBP) regulates Nrf2-induced gene transcription [61]. Therefore, 
it is expected that miR-132 is regulated by Nrf2 via CBP. Moreover, 
it has been shown that CA activates the MAPK-dependent CREB 
pathway in addition to Nrf2/ p62/ZIP in PC12 cells [26]. Therefore, it 
is expected that the MAPK-dependent CREB pathway induced by CA 
regulates miR-132. 

On the other hand, it has been reported that forskolin promotes 
PKA and CREB phosphorylation and induces miR-132 expression 
in cultured primary rat neurons [57]. It is known that PKA 
phosphorylates CREB and that there are more than 100 CREB target 
genes including IEGs. Furthermore, we reported that dbcAMP-
induced neurite outgrowth is regulated by the PKA-CREB-Nur77 
pathway in PC12 cells [44]. However, the relationship between PKA-
CREB-dependent neurite outgrowth and the regulation of miR-
132 has not yet been clarified. Recently, it was reported that miR-
132 regulates the differentiation of dopamine neurons by directly 
targeting Nurr1 expression [62]. It is known that Nur77 and Nurr1 
are members of the Nur77 family, which also contains orphan nuclear 
transcription factors. Therefore, it is expected that miR-132 regulates 
neurite outgrowth by Nur77 expression, similar to Nurr1. The role 
of Nur77 on miR-132-mediated PC12 differentiation remains to be 
investigated. A detailed investigation is expected in the future.

The transcriptional regulation of acetylation is also one of the most 
important potential mechanisms by which signaling transduction 
cascades may control their cellular functions [63]. The control of 
transcription by epigenetic modifications has proven to be important 
for neurite outgrowth and neuroprotection activity during neuronal 
development in the nervous system. 

Recent studies have shown that many non-histone proteins, 
particularly transcription factors, are substrates for CBP/p300, greatly 
expanding the possible mechanisms of CBP/p300 in transcriptional 
activation [64]. CBP and p300 proteins are common co-activators for 
a variety of transcription factors [65,66].

Sun et al. revealed that CBP/ p300 directly bound to and acetylated 
Nrf2 in response to arsenite-induced oxidative stress [67]. Acetylation 
of Nrf2 by CBP/p300 showed the possibility to constitute a novel 
regulatory mechanism for Nrf2-dependent neurotrophic activity. 
Nur77 is acetylated in vivo and in vitro by CBP/p300 and has been 
detected using acetylation specific antibodies, including anti-Pan-
acetyl and antiacetylated Lys antibodies [68]. We reported that Nur77 
was involved in dbcAMP-induced neurite outgrowth in PC12 cells 
[44]. Acetylation of Nur77 by CBP/ p300 may also constitute a novel 
regulatory mechanism for Nur77-dependent neurotrophic activity. As 
shown in figure 4, we propose a similar novel regulatory mechanism 
by which low-molecular-weight compounds induce neurite outgrowth 
and neuroprotection.

Conclusion
It has become evident that low-molecular-weight-compounds 

including natural products may work as therapeutic agents possessing 
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Figure 3: Structure of forskolin.
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neurotrophic activities and that they may exert many effects on cell 
function in the central and peripheral nervous systems. However, 
molecular mechanisms of neurotrophic activities via low-molecular-
weight-compounds are largely unknown. In this review, we introduced 
the possibility that three low-molecular-weight compounds CA, 
luteolin and forskolin showed neurotrophic activities through the 
same mechanism in the post-translational regulation.

Low-molecular-weight compounds may lead to post-
transcriptional regulation including miRNAs and acetylation of 
histones, and, thus, induce the expression of transcription factors. 
These transcription factors may be acetylated by CBP/p300. Both 
acetylated transcription factors and acetylated histones may lead to 
the increased expression of the genes of proteins involved in neurite 
outgrowth and neuroprotection (Figure 4).

It is expected that the detailed relationship between the 
neurotrophic activities of low-molecular-weight compounds and gene 
expression will be revealed in the future.
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