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Abstract

Tendon and ligament injuries are the most common problems in adult health accounting for about half of all
musculoskeletal injuries. Rupture of the anterior cruciate ligament (ACL) results in the loss of whole joint stability
leading to meniscal rupture, cartilage damage and early osteoarthritis. Arthroscopic reconstruction using autografts
or allografts has known drawbacks such as ligament laxity, donor site morbidity and long recovery periods. In
addition to the appropriate mechanical environment, several biological factors have been implicated in the ACL
healing process including specialised growth factors and mesenchymal stem cells (MSCs). However, in order to
produce a superior molecular and biomechanical ACL there will be always the need to provide a suitable scaffold to
‘house’ MSCs and to provide adequate biomechanical properties in order for the regeneration process to proceed.
Understanding the mechanisms of ACL healing following cellular therapy may lead to novel, more effective and
biological-based tissue engineering strategies for ACL reconstruction. The focus of this review is the current
knowledge of ACL reconstruction after joint trauma when combining MSC and tissue engineering technologies.
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Introduction
Musculoskeletal trauma continues to cause major disability

worldwide. Tendon and ligament injuries represent a major challenge
as physiological repair (if there is any) is exceedingly slow and
incomplete. Ligaments can sustain high mechanical forces and
fundamentally provide joint stability. The anterior cruciate ligament
(ACL) is a key knee ligament stabilizer and an ACL tear will result in
joint instability, which may in turn cause meniscal tears and
degenerative joint disease. Its intra-articular localisation,
hypocellularity and hypovascularity afford only a limited healing
capacity. In the United States approximately 175,000 ACL cases
require surgery each year with an estimated cost of 1 billion dollars [1].

Reconstruction of the ACL has been the topic of vivid discussion
amongst surgeons for years. Arthroscopic reconstruction techniques
with autografts or allografts have been associated with such drawbacks
as ligament laxity, donor site morbidity and a long recovery period. To
overcome these shortcomings stem cell- and biomaterial-based
technologies have been developed for ligament regeneration. In
general, stem cells are immature cells that have the capacity for self-
renewal, a high potential for proliferation, and differentiation towards
several different cell lineages under appropriate induction conditions.
There are two types of stem cell, namely embryonic (pluripotent) and
non-embryonic or adult (multipotent) stem cells [2]. Mesenchymal
stem cells (MSCs) are multipotential adult stem cells that reside within
the connective tissue of most organs [3]. Autologous MSCs can be
obtained with minimal invasiveness from a patient’s own bone
marrow (BM) and can be added to biological or synthetic scaffolds, to

ensure maximal repair potential. Highlighted in this mini-review are
recent advances in ACL reconstruction based on MSCs exogenously
added, as well as the concept of endogenous MSC recruitment to the
injured area.

Physiological repair of injured tendons: is this the case for
ACL repair?

Ligaments and tendons are elastic collagenous tissues that
contribute to knee motion and possess similar molecular, cellular and
hierarchical structure. Normal ligament and tendon healing can be
divided into four characteristic phases [4]. Phase I is the post-injury
phase where blood enters the affected area until a haematoma develops
over the initial 72 hours. During this phase, inflammatory cells (such
as monocytes, leukocytes and macrophages) infiltrate the affected area
and initiate the healing process by secreting cytokines and growth
factors. Next, in phase II reparative fibroblast-like cells slowly
proliferate and synthesize tissue-specific collagens (mainly collagen
III) forming provisional scaffolds. Finally, phases III and IV are
characterised by vascularisation of the newly formed tissue and
functional matrix organization, respectively [4].

There are several lines of evidence suggesting that MSCs exist in
ligaments and tendons, and contribute to the endogenous phase II of
the regeneration process. Firstly, post-injury tendons can occasionally
develop fibrocartilage and ossified tissues; tissues descended from
MSCs [5,6]. Secondly, human tendon-derived fibroblasts express genes
that are related to chondrogenic, osteogenic and adipogenic lineages
suggesting their multipotentiality in vitro [7,8]. Furthermore, these
MSC-like cells have been referred to as tendon stem/progenitor cells
(TSPCs) [9,10].
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Whilst the presence of endogenous MSC/TSPCs can explain the
spontaneous healing of some tendon pathologies, their involvement in
ACL regeneration is likely to be limited. This may be due to the fact
that ACL-derived fibroblasts show different biological properties such
as low mobility, proliferation, and matrix synthesis capacities
compared to TSPCs [11]. Furthermore, the torn ends of ACL retract
significantly due to high residual strain making the bridging of the gap
more difficult. However, perhaps the most crucial reason as to why
ACL does not heal naturally is because its thin synovial sheath disrupts
and blood dissipates into the synovial fluid (SF) preventing good
haematoma formation [1]. Consequently, phases I and II of the
regeneration process cannot proceed and omission of these phases
results in a lack of a provisional scaffold formation [1].

Pioneered by Steadman et al. the use of minimally invasive femoral
condyle microfracture to treat ACL injuries in athletes demonstrated
encouraging results [12]. The technique involves perforation of the
subchondral bone causing bone marrow dissipation within the intra-
articular area potentially leading to infiltration of reparative cells into
the ACL. The observed repair could also be mediated by SF MSCs that
may be released into the damaged area post-injury. Original findings
by the Sekiya group showed that post-injury, SF MSCs not only
increase in number but are also actively involved in tendon and bone
remodelling [13,14]. However, in order to produce a superior
molecular and biomechanical ACL there will always be the need to
provide an adequate scaffold to ‘house’ these reparative cells and to
provide adequate biomechanical properties for the regeneration
process to proceed (Figure 1). Therefore, significant research efforts
have recently been focused on developing a provisional bioabsorbable
scaffold that can be easily implanted resulting in a more effective ACL
reconstruction.

Figure 1: Anterior cruciate ligament reconstruction concept based
on the ‘diamond’ concept of bone fracture healing proposed by
Giannoudis et al.

Drawbacks of current interventions using scaffolds alone
Even though the current gold standard of ACL treatment, namely

the removal and replacement of the ruptured ACL with hamstring
tendon or bone-patellar-bone tendon autografts has a satisfactory
short-term outcome, a recent prospective cohort study has shown that
a large proportion (62%) of patients with a reconstructed ACL present
radiographic evidence of post-traumatic osteoarthritis 10-15 years
post-implantation [15-18]. Taking into account that most injuries
occur during adolescence, the current treatment interventions expose

patients to a greater risk of developing premature post-traumatic
osteoarthritis before the age of 30. In this context, lack of harvest
morbidity, less traumatic surgical technique, decreased postoperative
pain and easier early rehabilitation make allografts an attractive
alternative. However, another recent cohort study from the United
States military academy showed that individuals having undergone an
allograft ACL reconstruction were significantly more likely to
experience clinical failure requiring surgical revision [19]. This
underlines the necessity to develop biocompatible scaffolds to replace
auto- and allo-grafts that would not only boost the rapid
reconstruction of the damage site but also result in a more
histologically and biomechanically normal ACL able to sustain the
required mechanical loads long-term.

Two types of scaffold have been used to restore the ruptured ACL,
non-synthetic and synthetic. Non-synthetic scaffolds are derived from
human or animal connective tissues such as dermis, small intestine
submucosa and pericardium. These scaffolds are produced by
decellularisation techniques using hypotonic buffers and
ultrasonication [20]. Although they possess inherent bioactivities
(mostly containing different types of collagen), they commonly display
poor mechanical properties, as well as variations in biocompatibility
and degradation rates [21]. On the other hand, synthetic scaffolds are
normally non-absorbable polymers that possess good mechanical
properties but so far have proven to have poor biocompatibility.
Several factors contribute to implantation failure of the synthetic
scaffolds such as poor incorporation of the scaffold within the bone
tunnel, flexural and rotational fatigue of the scaffold’s structure, and
loss of scaffold integrity. However, delayed cellular colonisation of
synthetic scaffolds is the main cause of the implantation failure [21].
Therefore, the way forward is most likely the development of ACL
implants based on scaffolds pre-seeded with MSCs or ‘smart’ scaffolds
capable of rapidly attracting and supporting differentiation of resident
MSCs, as described below.

Repair of injured ACL by using MSCs and scaffolds
Clinical applications using MSCs as cell therapy support the notion

that MSCs are safe and can be applied in both autologous and
allogeneic settings [22,23]. Numerous studies of ligament tissue
engineering have particularly shown that MSCs can differentiate
towards ligament fibroblasts [24-32]. The reparative effects of MSCs
directly injected into the intra-articular area (i.e. exogenously added)
have been studied in partial ACL rupture rat models. Kanaya et al.
showed that direct injection of green fluorescent protein-labelled rat
BM MSCs into the intra-articular area accelerated ACL healing by
forming superior histological and biomechanical tissue compared to
non-treated knees. Interestingly, the exact topography of the infused
MSCs was determined as being within the newly formed tissues,
proving that injected MSCs had entered the wound area. In a similar
study, Oe et al. showed that both uncultured and culture expanded
MSCs could be effective for partial ACL tears not only due to their
direct differentiation towards fibroblasts but also due to their trophic
actions in the wound site mediated by the secretion of high levels of
transforming growth factor-β (TGF-β) [33].

However, there are drawbacks associated with the repair of injured
ACL by MSCs alone. As mentioned above, the post-injury torn ends of
an ACL retract due to high strain resulting in the lack of adequate
provisional scaffold, leading to poor homing and survival of MSCs in
the injured area due to inflammation [34]. Therefore, current efforts
are focused on the development of specialised scaffolds that could
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provide homing signals as well as facilitate the adherence, proliferation
and differentiation of MSCs.

In order to improve the osteointegration and biomechanical
properties of the provisional biological scaffold, autografts and
allografts have been combined successfully with MSCs [35,36].
Synthetic scaffolds, silk-based [25] and collagen-based [37] have been
used to treat ACL rupture in porcine models. In both cases the
combination of biomaterials with MSCs resulted in biomechanically
superior ACL tissues up to one year post-surgery. Various growth
factors have been applied to enhance MSC proliferation,
differentiation and extracellular matrix deposition on to these scaffolds
(Figure 1); these include TGF-β/epidermal growth factor (EGF) [26],
TGF-β/insulin [26], insulin-like growth factor (IGF-1) [26], platelet-
derived growth factor (PDGF) [38], vascular endothelial growth factor
(VEGF) [39], basic fibroblast growth factor (bFGF) [31,38] and growth
differentiation factor-5 (GDF-5) [40]. Alternatively, BM MSCs
encoding TGF-β1, VEGF or both TGF-β1/ VEGF growth factors were
used in a rabbit model and showed improved performance in
promoting angiogenesis and resulted in tissue formation with good
mechanical properties 24 weeks post-surgery [30]. Gene therapy is
arguably a safer technique compared to the application of various
growth factors, as the latter could have undesirable effects on other cell
types such as inducing their proliferation or tumorigenesis. For
example, recent studies highlighted some adverse effects and
complications related to BMP-2 administration in humans [41,42].
However, in order to develop gene therapy approaches for ACL
reconstruction, a better knowledge of the mode of action of candidate
growth factors on MSCs is needed.

Several studies have demonstrated that mechanical stimulation of
MSCs cultured on specialised biomaterials could induce their
differentiation towards ligamentous fibroblasts. Early pioneering
studies showed that MSCs seeded on to type I collagen or silk matrix
and subjected to tensile or rotational strain could differentiate towards
fibroblasts by upregulation of ligamentous fibroblast markers such as
collagen types I/III and tenascin-C [43-45]. Similarly, Butler et al.
showed that MSCs seeded on to type I collagen sponges upregulated
their matrix deposition capacity under the action of tensile loading
[46]. Recently, Subramony et al. indicated that bFGF stimulation
followed by physiologically relevant tensile strain enhanced the
differentiation of MSCs into ligamentous fibroblasts and their
extracellular matrix production when cultured on nanofibres [47].

In humans, several clinical trials have been performed using MSC
transplantation for treating ligament injuries resulting in positive
outcomes on the healing process [48]. Therefore, the effects of
specialised biomaterials, chemical and mechanical stimuli on the
reparative capacity of MSCs need to be further investigated.

Conclusion
Evidence suggests that the addition of MSCs can be an effective tool

to achieve ligament regeneration due to their multipotential and
trophic properties. However, similar to bone fracture healing [49],
ligament healing is a complex physiological process that involves four
different factors for optimal tissue restoration: MSCs, scaffolds, growth
factors and mechanical stimulus. Therefore, in order to develop a
biological scaffold for ACL reconstruction further research has to
focus on how the abovementioned factors can be combined effectively
to achieve optimal ACL restoration.
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