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Abstract
Phase transformation of calcium phosphates from amorphous to crystalline phases around neutral pH proceeds 

via direct structure conversion using non-ionic elementary units. This transformation inevitably forms metastable 
intermediate-structured phase(s) between the two end phases. In addition to conventional calcium phosphate 
phases appearing in the transformation, new unknown phases were observed. They did not correspond to simply 
poor crystalline materials of conventional phases and instead had particular structures. One was pseudo-OCP, which 
lacked the HPO4-OH layers in the conventional OCP structure.
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Calcium phosphates have been energetically investigated for 
more than half a century because of their important role not only in 
forming hard tissues such as bone and teeth but also being a frequent 
cause of calculus and arteriosclerosis [1,2]. One factor hindering a 
sound understanding of their formation mechanism is that they appear 
in several forms at room to body temperatures [3,4]. For example, 
amorphous calcium phosphate (ACP), dicalcium phosphate dihydrate 
(DCPD), β-tricalcium phosphate (β-TCP), octacalcium phosphate 
(OCP), and hydroxyapatite (HAP) form in weak acidic to weak basic 
calcium phosphate solutions. They precipitate and stably exist or 
transform into other more stable phases depending on the solution 
conditions. Transformation between each calcium phosphate [5-7] 
is of particular interest because the control of this process results in 
obtaining a desirable phase that can contribute to the design of calcium-
phosphate-based biomaterials with novel functions.

Two phase-transformation mechanisms have been proposed. One 
is solvent-mediated transformation, which is the simple dissolution 
and growth of materials depending on the difference in solubility. A 
representative example for calcium phosphate is the hydrolysis of 
DCPD and subsequent growth of OCP [8]. The other is structural 
conversion from metastable to stable phases as was revealed in situ using 
a light scattering technique [9,10]. If the concentrations of calcium and 
phosphate ions in the solution are sufficiently high, ACP first forms in 
the solution and transforms into other phases such as OCP and HAP. 
The transformation proceeds via direct conversion of an amorphous 
structure into crystalline ones. This kinetics is attributed to a common 
cluster unit present in both the amorphous and crystalline phases [11-
15]. Posner's cluster [11] and its symmetric isomers [16] were proposed 
for this common cluster, and then more complex structures of clusters 
were found through experimental and computational investigations 
[17,18]. That the clusters can be decomposed into smaller ion pairs as 
the minimum unit was also proposed [19], indicating the need for more 
careful investigation of the elemental unit in the phase transformation 
of calcium phosphates.

 Leaving aside the question about the structure of the minimum 
unit, we note that it is well accepted that phase transformation of calcium 
phosphates proceeds via non-ionic larger clusters (including ion pairs) 
as well as in calcium carbonate [20-22], which is another representative 
biomineral. One or more calcium phosphate phases among β-TCP, 
OCP, and HAP are known to appear during the transformation from 

ACP. This conventional scheme is, however, not sufficient to explain the 
transformation kinetics because it neglects the intermediate metastable 
phases that should appear during the transformation. These phases are 
naturally expected as long as the transformation proceeds via structural 
conversion from one stable phase to another stable phase. Several local 
free-energy minimums present during transformation between two 
phases, which suggests the formation of unknown calcium phosphates. 
Our recent investigations on this intermediate phase are presented in 
this short communication.

When the concentrations of calcium and phosphate ions were 
set to 5 mM in a weak acidic solution (pH = 6.5, 22ºC; reference 
solution), ACP immediately formed in the solution and transformed 
into OCP and subsequently precipitated within 2 h. However, when 
gold nanoparticles with immobilized carboxylic functional groups 
on their surface were added to the solution, less than a 1/1000 molar 
concentration of calcium or phosphate ions, an OCP-like intermediate 
phase precipitated prior to the formation of conventional OCP 
(experimental details are given elsewhere [23]). 

Figure 1a shows spectra obtained using in situ FTIR for the 
reference and gold nanoparticles-containing solutions before the initial 
precipitates were observed. Crystalline domains developed in the ACP. 
The spectra for both solutions showed typical absorption bands of OCP 
at 963, 1021, and 1128 cm–1, but the spectrum corresponding to the gold 
nanoparticles-containing solution (GN) lacked the band at 1220 cm–1, 
which corresponds to OH– vibration in the HPO4-OH layer of OCP 
crystal, although it was observed in the reference solution spectrum 
(Ref). The bands corresponding to HPO4 vibrations at 872 and 1128 
cm–1 were also undeveloped in the GN spectrum. 

The XRD pattern of the initial precipitate from the reference 
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solution corresponded to that of OCP (Figure 1b-Ref) whereas that 
from the gold nanoparticles-containing solution (Figure 1b-GN) lacked 
the characteristic (100) diffraction of OCP (2Ɵ = 4.7°) although other 
peaks were observed. The 31P solid-sate NMR for the precipitate from 
the gold nanoparticles-containing solution (Figure 1c-GN) showed a 
broad main peak at 3.0 ppm (OCP P1 and P2/P4 sites) and shoulder 
peaks at 1.9 (OCP P3 site) and –0.4 ppm (OCP P5/P6 site), suggesting 
that the structure of this material was essentially similar to that of OCP. 

Figure 2a shows the macroscopic morphology of initial precipitates 
from gold nanoparticles-containing solution. HR-TEM images 
revealed the coexistence of complex lattice fringes (Figure 2b) and 
partially ordered fringes (Figure 2c) in the materials. We concluded 
from these findings that the material that initially precipitated in the 
gold nanoparticles-containing solution was not simply poor crystalline 
OCP but pseudo-OCP with a partially ordered structure. Since pseudo-
OCP gradually changed to actual OCP with maturation in the solution, 
it was metastable intermediate phase. The OCP crystal structure along 

the a-axis consists of alternating apatite-like layers and HPO4-OH 
layers (corresponding to the center of hydrated layer in the previous 
OCP model) [8,24]. We simulated the XRD pattern based on the OCP 
structure and found that the lack of an HPO4-OH layer resulted in 
the XRD pattern of pseudo-OCP; i.e. disappearance of characteristic 
(100) diffraction. This model coincides well with the FTIR data. As 
described above, the appearance of an intermediate phase or phases 
is natural if the transformation from amorphous to crystalline phases 
proceeds via structural reconstruction using a common essential unit. 
Gold nanoparticles hindered formation of the particular structure 
in the crystalline phase during reconstruction, acting like a negative 
catalyst. The selection of the OCP or pseudo-OCP reaction route can 
be explained by the concept of pre-nucleation clusters and polymer 
induced liquid precursors (PILP) that the crystalline structure of each 
polymorph was controlled by the corresponding amorphous structure 
[25-29]. 

Phase transformation from OCP to HAP is an interesting topic 

Figure 1: (a) FTIR spectra for reference (Ref) and gold nanoparticles-containing (GN) solutions. Solid arrows (963, 1021, and 1128 cm–1) indicate peaks corresponding 
to OCP, red dotted lines indicate peaks corresponding to OH– (1220 cm–1) and HPO4

2– (872 and 1128 cm–1) ion vibrations in OCP, and dotted arrows (985 and 1052 
cm–1) indicate peaks corresponding to PO4

3– ion vibration in OCP. (b) XRD patterns for initial precipitate from reference (Ref) and gold nanoparticles-containing (GN) 
solutions. (c) NMR spectra of initial precipitate from reference (Ref) and gold nanoparticles-containing (GN) solutions (reproduced with permission of use from Ame. 
Mine. vol. 100 (2015). Copyright 2015, Mineralogical Society of America).

Figure 2: (a) FE-SEM image of pseudo-OCP precipitated from gold nanoparticles-containing solution. (b) HR-TEM images of complex lattice fringes and (c) ordered 
lattice fringes observed in pseudo-OCP.
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because it relates to the formation mechanism of human tooth enamel 
[30]. Previous investigations using HR-TEM showed that HAP crystal 
epitaxially grew on the (100) face of OCP single crystal [30-33]. 
Owing to the structural resemblance between OCP and HAP crystals, 
oriented growth of HAP crystal on OCP has been thought to be a 
natural process. However, in situ AFM observations of OCP dissolution 
suggested the presence of an intermediate phase before the formation 
of HAP. When OCP single crystal was dissolved in pure or saline water 
(50 mM NaCl), dissolution steps and etch pits having the minimal step 
height (~2.0 nm) corresponding to the [100] orientation appeared on 
the surface. The synthesis of the OCP crystal and the AFM observation 
are explained elsewhere [34]. 

During the dissolution, nanoparticles (~10 nm) suddenly 
precipitated due to the local increase in calcium- and phosphate-ion 
concentrations close to the surface, and they coalesced with each 
other, similar to the process in a liquid-like material (Figures 3a,b). 
OCP dissolution slowed during nanoparticle precipitation, but it never 
stopped. The precipitated phase covered the OCP surface without 
changing the morphology of the substrate; i.e., a pseudomorphic 
relationship was observed between the precipitated phase and OCP 
(Figure 3c). 

After the pseudomorphic layer formed, the new phase started 
dissolving at a much slower rate than the substrate OCP. This phase 
should have lower solubility than OCP, and the corresponding 
phase is HAP in the conventional model. The behavior of this phase 
was, however, amorphous-like, and TEM observation revealed a 
nanometer-thick amorphous-like layer around the OCP crystal (Figure 
3d). Complex lattice fringes in this layer similar to those found in the 
pseudo-OCP were also observed. The precipitated material is though to 
be amorphous-like pseudo-HAP, the intermediate phase formed prior 
to crystalline HAP formation, although a detailed characterization is 
needed.

The findings presented here indicate the presence of unknown 
metastable intermediate phases not previously investigated in full. 
As shown, adding appropriate impurities or catalysts can control the 
lifetime of these phases.
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