
1 | © I J A I T I 2 0 1 2
VOLUME 1 NUMBER 4 (July/Aug 2012)
ISSN: 2277–1891

Original Research Articles

MINER: An Improved Adaptive Join Algorithm

Abstract:

Adaptive join algorithms were created to overcome the drawbacks of

traditional join algorithms in emerging data integration or online aggregation

environments. The input relations to adaptive joins are continuously retrieved

from remote sources. The main objective for designing these algorithms is to i)

start producing the first output tuples as soon as possible ii) produce the

remaining results at a fast rate. One of the early adaptive join algorithm

Multiple Index Nested-loop Reactive join (MINER) is a multi-way join operator

used for joining an arbitrary number of input sources. Here MINER was limited

to chain joins. In this paper, MINER is extended to support snowflake joins,

where each relation may participate in joins with more than two join attributes.

It will improve producing result tuples at a significantly higher rate, while

making better use of the available memory.

Keywords: Query processing, Snowflake joins, Streams.

Introduction:

In a distributed environment, statistical information for the available data

sources may be minimal, where the availability or load of physical resources is

prone to be changed. Consequently, traditional query optimization can lead to

poor performance, especially in long running query evaluations, as the query

optimizer may not, at compile time, have the necessary statistics, good

selectivity estimates, knowledge of the runtime bindings in the query, or

knowledge of the available system resources required to produce an optimal

query plan (QP). In addition, traditional optimizers cannot predict the future

availability of resources. Adaptive query processing (AQP) addresses this, by

adapting the query processing to changing environmental conditions at

runtime.

Traditional join algorithms [9, 10] assume that all input data is available

beforehand. This assumption is not suitable in emerging data integration or

online aggregation environments; a key performance metric is rapid availability

of first results & higher join result rate. With the goals of avoiding the blocking

behavior of remote data sources & producing join results as quickly as possible

a family of adaptive join algorithms are developed [1,3,4,5,6,7]. Adaptive join

algorithms have the ability of non-blocking behavior and producing join results

even if one or both sources are blocked.

Adaptive joins are designed to deal with some additional challenges over

traditional join algorithms: input relations to them are provided by autonomous

data sources through heterogeneous networks. Data is transported through

Researchers

 C. Naga Pradeep Kumar

 Asst.Prof,IT Dept., SRIT, Anantapur,

Andhra Pradesh

Prof. A. Ananda Rao

Principal, JNTUACEA, Anantapur,

Andhra Pradesh

Email:

nagapradeep.srit@gmail.com

2 | © I J A I T I 2 0 1 2
VOLUME 1 NUMBER 4 (July/Aug 2012)
ISSN: 2277–1891

unreliable network environments. The problem is that data arrival rate can’t be controlled. Since the data

access over wide-area networks involves a large number of remote data sources, intermediate sites &

communication links, all of which are vulnerable to congestion and failures. Adaptive join algorithms

overcome situation like initial delay, slow data delivery, or bursty arrival [2,11] which can affect the efficiency

of join. Most existing algorithms are limited to a two-way join. Devising an effective multiway adaptive join

operator is a challenge in which little progress has been made [1,3]. In this paper, a similar approach of

MINER[1] that supports snowflake joins is proposed, where data are held by multiple remote sources.

The rest of the paper is organized as follows: Section 2 illustrates Snowflake MINER architecture and its

operations in detail. In Section 3, MINER for Snowflake joins algorithm is analyzed. Section 4 is carried out

through experiments and results their conclusions and future work are proposed in Section 5.

Snowflake MINER Architecture

A snowflake join is a join where a large table is joined with three or more smaller base tables or joins relations,
where these smaller base tables may themselves are joined to three or more smaller base tables or joins
relations. The following architecture is proposed to extend the MINER to support snowflake joins.

Fig.1 MINER for snowflake joins

Fig. 1 shows MINER for snowflake joins architecture. MINER for snowflake joins proceeds in three stages, each
of which is performed by a separate thread. The First Stage joins memory resident tuples. Tuples arrive in the
input buffer. Tuples are processed in memory using an index. Some statistics might be kept about relations
(e.g., cardinalities). When memory is exhausted, some tuples are flushed on disk by using flushing policy [5].
The Second Stage joins tuples that have been flushed to disk due to memory constraints. It is activated when
all streams experience delay. The Third Stage is a clean-up stage, which performs any necessary matching to
produce results missed by the first two stages. The first and second stages run in an interleaved fashion, the
second stage takes over when the first becomes blocked due to a lack of input. These stages are terminated
after all input has been received, at which point the third stage is initiated.

Proposed Algorithm

In this section algorithm for MINER to support snowflake joins of the following form is proposed

Fig.2 Snowflake Joins

3 | © I J A I T I 2 0 1 2
VOLUME 1 NUMBER 4 (July/Aug 2012)
ISSN: 2277–1891

Fig. 2 illustrates each relation may participate in joins with more than two join attributes.

Step1: While relations RA, RB, RC and RD still have tuples do following steps.
Step2: If tuple ti € Ri arrived (i € {RA, RB, RC ,RD }) in input buffer, then move tuples from input buffer to

MINER process space.
Step3: Apply join operation for set of matching tuples found using Indexes.
Step4: When Used Memory exceeds Threshold limit then flush those unprocessed tuples that reside in

MINER process space for maximum time to disk such that Used Memory must come into below
Threshold limit.

Step5: If transmission of RA, RB, RC and RD is blocked more than wait threshold then
5a. Bring tuples that have been flushed to disk due to memory constraints to MINER process space.
5b. Apply join operation for set of matching tuples found using Indexes.
5c. If maximum numbers of input tuples are collected in input buffer size is satisfied then repeat steps
2 to 4.

Once all relations have been received in their entirely repeat steps 2 to 4.
There exist multiple join attributes per relation, hence algorithm maintains for each input relation a separate
index on each join attribute. In this algorithm hash-table data structure is utilized as indexes. In Step 2
Algorithm is said to be in First Stage, in which tuples will arrive to input buffer. When a new tuple comes, it is
stored and indexed in the Miner process space of its relation, based on the relation’s join attributes. Then this
new tuple is checked for matching with all the in-memory tuples belonging to all other relations participating
in the join. This process will continue until memory is exhausted, or else algorithm flushes tuples from the
relation with the largest number of in-memory tuples to respective disks, which is mentioned in step 4.
When all data sources experience delays then Second Stage will be activated, in which algorithm performs
joins between previously flushed data. Any matches found are output as result tuples. So that algorithm will
progress while no input is being delivered. If any of the join inputs have resumed producing tuples, then the
algorithm switches back to the First Stage. After all tuples have been received from all relations then Third
Stage executes, that makes sure that all the tuples should be in the result set are ultimately produced.

Experimental Results

Table 1 illustrates the percentage of the total result obtained by algorithm during the first stage, in the
presence of multiple inputs while we vary the available memory. Result of Table 1 is summarized in Fig. 3
which presents a comparison between MINER for SSTAR joins and MINER for Snowflake joins. There is a
modest increase in the number of results obtained as we increase the available memory.

Table.1 Ratio between memory size and results during first stage

Memory size
in percentage

% of total
results after
first stage in
MINER for
SSTAR join

% of total results
after first stage in

MINER for
Snowflake join

5% 25 30

10% 45 50

15% 63 70

20% 75 80

4 | © I J A I T I 2 0 1 2
VOLUME 1 NUMBER 4 (July/Aug 2012)
ISSN: 2277–1891

Fig.3 Comparison

Conclusions and Future Work

A novel adaptive join algorithm MINER for Snowflake Joins has been proposed, that produces result tuples at a
significantly higher rate, while making better use of the available memory. It is also designed for dealing with
cases where data are held by multiple remote sources and relations that may participate in joins with more
than two join attributes.
In future work it can explore to the optimization problem of how to best to split a very large multi-way join
into a set of smaller multi-way joins.

References

[1] Mihaela A. Bornea, Vasillis Vassalos, Yannis Kotidis, and Antonios Deligiannakis, “ Adaptive Join Operators

for Result Rate Optimization on Streaming Inputs”, IEEE Knowledge & Data Engg., August 2010, Vol. 22, No. 8

[2] S. Babu, and P. Bizarro, “Adaptive Query Processing in the Looking Glass,” Proc. Conf. Innovative Data

Systems Research (CIDR), 2005.

[3] S.D. Viglas, J.F. Naughton, and J. Burger, “ Maximizing the Output Rate of Multi-Way Join Queries over

Streaming Information Sources,” Proc. 29th Int’l conf. Very Large Data Bases (VLDB’03),pp.285-296,2003

[4] J. Dittrich, B. Seeger, and D. Taylor, “Progressive Merge Join: A Generic and Non-Blocking Sort-Based Join

Algorithm,” Proc. Int’l Conf. Very Large Data Bases (VLDB), 2002.

[5] M.F. Mokbel, M. Lu, and W.G. Aref, “Hash-Merge Join: A Non-Blocking Join Algorithm for Producing Fast

and Early Join Results” Proc. IEEE Int’l Conf. Data Eng. (ICDE), 2004.

[6] Y. Tao, M.L. You, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis, “RPJ: Producing Fast Join Results on

Streams through Rate-Based Optimization,” Proc. ACM SIGMOD, 2005.

[7] T. Urhan, and M.J. Franklin, “XJoin: A Reactively-Scheduled Pipelined Join Operator,” IEEE Data Eng. Bull.,

Vol. 23, no. 2, pp. 27-33. 2000.

[8] Z.G. Ives et al., “An Adaptive Query Execution System for Data Integration,” Proc. ACM SIGMOD, 1999.

[9] J.D. Ullman, H. Garcia-Molina, and J. Widom, Database Systems: The Complete Book. Prentice Hall, 2001.

[10] Mishra and M. H. Eich. Join Processing in Relational Databases. ACM Computing Surveys, 24(1): 63–113,

1992.

[11] L. Amsaleg, M. J. Franklin, A. Tomasic, and T. Urhan. Scrambling Query Plans to Cope with Unexpected

Delays. PDIS Conf., Miami, USA, 1996

Author Details
C. Naga Pradeep Kumar
Assistant Professor, IT Department, SRIT, Anantapur(D), A.P., India

Prof. A. Ananda Rao

Principal, JNTUACEA, Anantapur(D), A.P., India.

0

20

40

60

80

100

5
%

1
0
%

1
5
%

2
0
%

%
 o

f
to

ta
l

re
su

lt
s

a
ft

er

fi
rs

t
 s

ta
g
e

Memory size in percentage

