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Abstract
Purpose: Intensity Modulated Radiation Therapy (IMRT) allows for significant dose reductions to organs at risk 

in prostate cancer patients. However, the accurate delivery of IMRT plans can be compromised by patient positioning 
errors. The purpose of this study was to determine if the modeling of grade ≥ 2 acute rectal toxicity could be used to 
monitor the quality of IMRT protocols. 

Materials and Methods: 79 patients treated with Image and Fiducial Markers Guided IMRT (FMIGRT) and 302 
patients treated with trans-abdominal ultrasound guided IMRT (USGRT) was selected for this study. Treatment plans 
were available for the FMIGRT group, and hand recorded dosimetric indices were available for both groups. We modeled 
toxicity in the FMIGRT group using the Lyman Kutcher Burman (LKB) and Univariate Logistic Regression (ULR) models, 
and we modeled toxicity in USGRT group using the ULR model. We performed Receiver Operating Characteristics 
(ROC) analysis on all of the models and compared the Area under the ROC curve (AUC) for the FMIGRT and the 
USGRT groups. 

Results: The observed Incidence of grade ≥ 2 rectal toxicity was 20% in FMIGRT patients and 54% in USGRT 
patients. LKB model parameters in the FMIGRT group were TD50=56.8 Gy, slope m=0.093, and exponent n=0.131. The 
most predictive indices in the ULR model for the FMIGRT group were D25% and V50 Gy. AUC for both models in the FMIGRT 
group was similar (AUC=0.67). The FMIGRT URL model predicted less than a 37% incidence of grade ≥ 2 acute rectal 
toxicity in the USGRT group. A fit of the ULR model to USGRT data did not yield a predictive model (AUC=0.5).

Conclusion: Modeling of acute rectal toxicity provided a quantitative measure of the correlation between planning 
dosimetry and this clinical endpoint. Our study suggests that an unusually weak correlation may indicate a persistent 
patient positioning error.
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Introduction
Accurate assessment of the effectiveness of radiation therapy is 

increasingly important due to recent technological trends towards 
more conformal techniques that provide improved dose distributions 
and enable dose escalation and hypo-fractionation. The technical 
ability to deliver highly conformal dose distributions brings significant 
benefits to patients but also creates challenges during the delivery of 
radiation therapy as errors in daily positioning of patients can lead to 
clinically significant differences between planned and delivered dose 
distributions [1-4]. Recent trends towards hypo-fractionation [5-7] 
exacerbate these concerns because delivering therapeutic doses in fewer 
but larger fractions reduces the opportunities for averaging of delivery 
errors over a treatment course. 

The best available method of ensuring that planned dose distributions 
are clinically delivered combines rigorous patient immobilization with 
daily kilo voltage imaging [8,9]. The accuracy of imaging protocols has 

been studied extensively and assessments of residual positioning errors 
can be found in the literature [1-3,8,10]. However, such assessments are 
based on research protocols which may not fully reflect the reality of a 
routine clinical practice due to time pressures and personnel training 
issues that may not be present in a research project. 

The goal of the present study was to investigate whether the 
modeling of grade ≥ 2 acute rectal toxicity in prostate treatments 
could be used as a tool to assess the accuracy of the clinical delivery 
of radiation therapy for prostate cancer. Modeling of toxicity is 
done under the assumption that planned dose distributions closely 
approximate clinically delivered dose distributions. If planned and 
delivered dose distributions are correlated one expects to observe a 
correlation between planned dosimetry and toxicity. If the quality of 
the clinical delivery of treatments is degraded however, the correlation 
between planned dosimetry and clinically observed toxicity could also 
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be diminished. 

To achieve the goal of the study we compared grade ≥ 2 acute rectal 
toxicity in two databases of prostate cancer patients who were treated 
with IMRT at our institution. The first group of 79 patients was treated 
with 7 field IMRT and daily patient positioning using image guidance 
with implanted gold seed markers (FMIGRT) [11]. The second 
group of 302 patients was treated with 5 field IMRT and daily patient 
positioning using less accurate trans-abdominal ultrasound system 
(USGRT) [12,13]. We modelled acute rectal toxicity in both groups to 
determine if differences in the incidence of acute rectal toxicity could 
be explained by differences in planning dosimetry alone and whether 
predictive models of grade ≥ 2 acute rectal toxicity could be derived 
for both groups. By choosing acute, rather than late, rectal toxicity we 
aimed to reduce the minimum number of patients needed to perform 
the analysis as acute toxicity is more commonly observed and can be 
assessed without a lengthy follow up period. 

Materials and Methods
Patients

The first group of 302 patients was treated between 2000 and 
2005 on IRB approved protocol using 5 Field IMRT technique and 
daily patient positioning using abdominal ultrasound technique (BAT 
system, NOMOS Corp) [13]. The second group of 79 patients was 
treated between 2009 and 2012 on IRB approved protocol using 7 field 
IMRT technique and daily patient positioning using X-ray imaging 
and implanted fiducial markers [11]. Both protocols were carried out 
by the same group of physicians, dosimetrists and physicists. Patient 
characteristics are summarized in Table 1. 

Treatment planning and dose prescription

The whole prostate was designated as a Clinical tumor volume 
(CTV) and two planning tumor volumes (PTV) were created using 
uniform 3 mm (PTV1) and 6 mm (PTV2) expansions. The group of 
302 patients was treated with 5 field IMRT technique, dose of 75.6 Gy 
to PTV1 and 70 Gy to PTV2, delivered in 42 fractions. The group of 79 
patients was treated with 7 field IMRT technique, dose of 77.4 Gy to 
PTV1, 70 Gy to PTV2, and simultaneous integrated boost (SIB) to areas 
suspicious of cancer as demonstrated in a planning multi-parametric 
magnetic resonance scan which was a combination of T2-weighted 
imaging, diffusion weighted imaging, and dynamic contrast enhanced 
imaging [11]. The SIB volume was identified by a diagnostic radiologist 
specializing in genitourinary imaging, was not expanded, and was 
prescribed 81-83 Gy. The rectum was drawn as a whole organ bounded 
by ischial tuberosity inferiorily and sigmoid flexure superiorily. The 302 
patients were planned using Corvus Treatment Planning System (TPS) 
by Nomos, Inc, while 79 patients were planned using Eclipse TPS by 
Varian, Inc. Six rectal DVH indices were manually recorded during 
treatment planning for all patients: Maximum Dose, Mean Dose, 
D1.8%, D10%, D30%, D40%.Treatment plans were preserved for 79 
patients whose treatments were planned with the Eclipse TPS and their 
dosimetric information was extracted for the purpose of the present 
study using Eclipse Application Programmers Interface (ESAPI). 
Summary of selected treatment planning information is shown in Table 
1.

Toxicity modeling

Acute rectal toxicity was scored using CTCAEv4 criteria by 
experienced physicians. Acute toxicity was defined as toxicity recorded 
during treatment or within the first 90 days immediately following the 
treatment. 

For the group of 79 patients whose treatment plans were fully 
preserved we used both the Lyman-Kutcher-Burman (LKB) [14,15] and 
Univariate Logistic Regression (ULR) models [16]. The LKB model has 
been used extensively in the past to model late [17] and acute [18] rectal 
toxicity in prostate cancer treatments, while the ULR model was based 
on standard dosimetric indices and could therefore be used to compare 
the two databases. 

A standard formulation of the LKB model was used [17]:

Treatment years 2000-2005 2009-2012

Patient Positioning Technique
Trans-abdominal 

Ultrasound 
USGRT

Kilovoltage imaging + 
gold markers

FMIGRT
Number of Patients N=302 N=79

Age [years] 74.3 ± 5.6 74.9 ± 7

Follow up time [months] 68.7 ± 33.1
[4–138.4]

23.7 ± 13.4
[3–55.3]

Prostate Volume [ccm] 78.9 ± 32.0 75.3 ± 26.6
Baseline PSA 9.1 ± 8.0 8.6 ± 6.7
Hormones [%] 35% 42%

Gleason ≥ 6 [%] 56% 69%
Gleason ≥ 8 [%] 17.6% 18.4%

T stage > T2a [%] 25.5% 39.9%
Fraction with more than 33% of 

positive biopsy cores [%] 53.7% 46.8%

Fraction with highest NCCN score 
[%] 22.5% 23.2%

Treatment Technique 5 field IMRT 7 field IMRT

Dose Prescription 75.6 Gy / 42 fx to 
whole prostate

77.4 Gy / 43 fx to whole 
prostate

boost to prostate sub-
volume identified by MRI:

5.1 Gy (mean)

[2.6 Gy, 5.6 Gy] (range)
Rectum Indices

Max Dose 79.5 ± 1.2 Gy 81.2 ± 1.2 Gy
D1.8% 75.4 ± 4.4 Gy 77.5 ± 1.7 Gy
D10% 68.4 ± 5.2 Gy 65.0 ± 5.9 Gy
D30% 52.5 ± 6.6 Gy 42.4 ± 6.6 Gy
D40% 47.4 ± 6.6 Gy 34.5 ± 7.6 Gy

Mean Dose 42.1 ± 6.7 Gy 33.3 ± 5.9 Gy
Acute Rectal Toxicity

Grade 0 18.2%
(N=55)

29.1%
(N=23)

Grade 1 28.2%
(N=85)

50.6%
(N=40)

Grade 2 53%
(N=160)

20.3%
(N=16)

Grade 3 0.7%
(N=2)

0%
(N=0)

Late Rectal Toxicity

Grade 0 59.6%
(N=180)

86.1%
(N=68)

Grade 1 28.2%
(N=85)

10.1%
(N=8)

Grade 2 11.3%
(N=34)

3.8%
(N=3)

Grade 3 1%
(N=3)

0%
(N=0)

Table 1: Patient characteristic, treatment planning details and incidence of grade 
≥ 2 acute rectal toxicity.
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The ULR model was formulated as follows:
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Where D is a standard dosimetric variable such as V%D, which is a 
volume fraction that receives a dose D or greater, or DX% which is the 
lowest dose received by the volume fraction X% and parameters α0 
and γ are parameters of the model. We used a Maximum Likelihood 
Estimation (MLE) technique and specifically the Nelder-Mead method 
[19] that has been implemented in the statistical software, “R” [20] 
The asymptotic theorem of MLE [21] was used to calculate confidence 
intervals.

We used planning DVHs in the database of 79 patients to fit a 
family of URL models which spanned a wide range of dosimetric 
indices which are typically used in treatment planning. We performed 
the Receiver Operating Characteristics (ROC) analysis for each model 
and selected the model with the largest area under the ROC curve 
(AUC) as the “optimum dosimetric index” which is the best predictor 
of acute rectal toxicity. We fit the ULR models to manually extracted 
indices and compared the AUC of these models to the AUC of models 
which relied on the full DVH information. A comparison of AUCs 
obtained with DVHs and with hand extracted indices was a practical 
measure of biases which could be introduced by the manual extraction 
of dosimetric indices during treatment planning.

We applied the ULR model obtained with the database of FMIGRT 
patients to indices stored in the database of USGRT patients and 
calculated the expected incidence of acute rectal toxicity for this group 
of patients, which we compared to the actually observed incidence. We 
performed a fit of the ULR model to indices stored in the database of 
the USGRT patients. The ROC analysis was performed for each model 
and the AUC of the model was compared to the AUC obtained in the 
database of 79 patients.

A statistical technique called Power Analysis [22] was used to 
estimate the likelihood that a correlation between planning dosimetry 
and toxicity would not be detected if one was present. 

Model fitting that utilized full dosimetry of FMIGRT patients 
included dose corrections to 2 Gy dose equivalent in accordance with 
QUANTEC report [17], using α

β
 ratio of 3 Gy. We used a voxel-by-voxel 

correction which corrected the dose in each voxel that belonged to the 
rectum to the 2 Gy equivalent dose. Fitting of the ULR models which 
relied on hand-extracted DVH indices did not include dose corrections. 

We used 79 FMIGRT patients to simulate a systematic patient setup 
error which would displace the isocenter posteriorly by the distance of 5 
mm. For each patient the dose was recalculated and the ULR model was 
used to estimate the expected increase in the incidence of acute rectal 
toxicity relative to unperturbed treatment plan. Based on the simulated 
NTCP values we generated synthetic toxicity data which would have 
been expected in clinical data if this systematic patient setup error was 
occurring for every patient. We then performed a fit of the ULR model 
using treatment planning dosimetry and synthetic toxicity data. No 

random setup error was included in this simulation. 

Results
The incidence of acute and late rectal toxicity is summarized in 

Table 1. The incidence of grade ≥ 2 rectal toxicity, acute and late, was 
approximately three times higher in USGRT patients when compared 
to FMIGRT patients.

Parameters of the fit of FMIGRT patient data to the LKB model are 
shown in Table 2. The values of dose-volume parameters of the model 
(m, n) and of the AUC were similar to the values typically found in 
the literature for studies that modeled late rectal toxicity [17]. As an 
additional, practical verification of this similarity we performed ROC 
analysis of the QUANTEC model when applied to acute rectal toxicity in 
our FMIGRT data. The AUC of the model was also 0.67 (Table 2), which 
demonstrated that the model predicted a relative risk of acute rectal 
toxicity equally well as our own fit. The QUANTEC model predicted 
a 3.5% incidence of grade ≥ 2 late rectal toxicity in our FMIGRT data 
which was qualitatively consistent with the observed late toxicity (Table 
2), though with a large margin of error due to small patient numbers. 
Because of a relatively small number of patients in the FMIGRT group 
we tested the robustness of the LKB fit by the statistical oversampling 
technique. Parameters of the fit remained within their error intervals 
while the minority class was doubled, tripled, and quadrupled. Since 
it has been previously reported that acute rectal toxicity may depend 
on mean rectal dose [18] we tested the robustness of the LKB fit when 
the gEUD exponent (parameter ‘n’ in Table 2) was set to n=1. The ROC 
analysis of the modified fit showed that the AUC of the model decreased 
from 0.67 to 0.56 and the confidence interval no longer excluded 0.5 
which strongly suggests that the model favors n<1.

Results of the search for the “optimum index” in the ULR model are 
summarized in Figures 1 and 2 and Table 3. These results qualitatively 
agreed with the LKB model, indicating that medium to high doses, 
applied to small volumes, were most predictive for acute rectal toxicity 
(corresponding to n<1 in the LKB model). The AUC of the “optimum” 
ULR model was 0.66, also similar to the LKB model. The optimum 
indices were determined to be D25% and V50 Gy.

A comparison of toxicity modelling based on DVHs and on 
manually extracted indices for FMIGRT patients is summarized in 
Table 4. The AUCs of respective models were comparable. When DVH 
based ULR models were applied to recorded indices the predicted 
incidence of toxicity was consistent with the observed incidence, with 
an exception of d1.8% for which the incidence was over predicted.

The comparison between FMIGRT and USGRT databases is 
summarized in Table 5. The estimated incidence of grade ≥ 2 acute 
rectal toxicity in USGRT database ranged from 12% to 37%. The 
observed incidence of acute rectal toxicity in USGRT patients was 54%. 
The last two columns compare AUC of ULR models which were fit to 
recorded indices in both databases. One observes that ULR models 
were predictive in FMIGRT database, and non-predictive in the 

TD50 m n AUC

Acute Toxicity 56.8
[53.7, 59.9]

0.093
[0.077, 0.108]

0.131
[0.099, 0.163]

0.67
[0.54, 0.80]

QUANTEC 76.9
[73.7, 80.1]

0.13
[0.10, 0.17]

0.09
[0.04, 0.14]

0.67
[0.54, 0.81]

Table 2: Parameters and 95% confidence intervals of the LKB model obtained with 
DVHs for FMIGRT patients, describing grade ≥ 2 acute rectal toxicity. QUANTEC 
late rectal toxicity model is shown for comparison with the AUC obtained when 
QUANTEC model was applied to acute rectal toxicity data in this work. 
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USGRT database in spite of the significantly higher number of patients 
in the USGRT database.

We used Power Analysis [22] technique to determine the likelihood 
that the correlation between planning dosimetry and toxicity was not 
detected in the USGRT database because of statistical fluctuation 
alone. Assuming that the true correlation between planning dosimetry 
and toxicity in the USGRT database was the same as in the FMIGRT 
database, the likelihood of detecting the correlation in the USGRT was 
greater than 95%. Hence, results shown in Table 5 strongly suggest that 

the correlation in USGRT database was not as strong as the correlation 
in the FMIGRT database.

The simulation of a systematic patient setup error in FMIGRT 
patients, which displaced the isocenter posteriorly by 5 mm in every 
patient, yielded an estimate that the systematic setup error of this 
magnitude could have approximately doubled (2.35 ± 0.3) the incidence 
of acute rectal toxicity. Results of the simulation are summarized in 
Table 6. It is noteworthy that shifting the isocenter for each patient by 
the same distance did not break the correlation between the planning 
dosimetry and the synthetic toxicity (Table 6).

Discussion
The Modeling of acute rectal toxicity in FMIGRT patients strongly 

suggests that the planning rectal dosimetry was correlated with grade 
≥ 2 acute rectal toxicity in this patient cohort. We fit two models to 
DVH data (LKB and ULR) and obtained predictive results with similar 
AUC values which were also consistent with the majority of published 
literature on the modeling of rectal toxicity [17]. Both models were in 
a qualitative agreement that medium to high doses, when applied to 
small volumes, were most predictive for acute rectal toxicity.

An extrapolation of the ULR model from the FMIGRT database to 
USGRT patients significantly under predicted the observed incidence of 
acute grade ≥ 2 rectal toxicity in USGRT patients. The highest estimate 
of expected incidence of toxicity was 37%, while the incidence of 54% 
was actually recorded. Moreover, fits of the ULR model to recorded 
indices in the USGRT database failed to produce a predictive model for 
any of the four indices (Table 5). This strongly suggests that there was 
little to no correlation between planning dosimetry and the relative risk 
of developing acute rectal toxicity among USGRT patients. 

The patient setup error was the most plausible cause of observed 
differences between FMIGRT and USGRT patients. A prior “in silico” 
study of the impact of random setup error on rectal toxicity [23] in 
fractionated prostate treatments suggested that random errors may not 
necessarily lead to a significant increase in toxicity because of averaging 
of rectal doses. Larger than expected incidence of rectal toxicity in 
USGRT patients may thus be an indication of a systematic setup error. 
The BAT abdominal ultrasound-based localization system which was 
used in this study was also used by other institutions during the decade 
of the 2000s [12,24-28], with published reports of clinically acceptable 
accuracies and workflow. More recent reports questioned the accuracy 
of ultrasound systems [29-31], however. In particular study by 
Foster et al. [29] compared the localization by the BAT system to the 
localization by implanted electromagnetic transponders and concluded 
that the localization by the BAT system might have been associated 

D25%

log ~
1

NTCP
NTCP

 
 − 

𝛂0

-5.23
[-9.93, -1.40]

P=0.015

𝛄
0.098

[0.002, 0.212]
P=0.064

AUC 0.66
[0.49, 0.76]

Table 3: parameters of the ULR model for the “optimum” index with the highest 
AUC.

D1.8% D10% D30% D40%

AUC
DVH based 

indices

0.63
[0.48.0.78]
P=0.038

0.64
[0.51,0.77]
P=0.046

0.63
[0.47,0.77]
P=0.084

0.58
[0.43,0.74]
P=0.316

AUC
recorded 
indices

0.63
[0.48.0.78]
P=0.037

0.58
[0.43,0.72]
P=0.045

0.62
[0.47,0.77]
P=0.084

0.58
[0.43,0.74]
P=0.317

Cross estimate 
of toxicity 
incidence

28% 20% 20% 20%

Actual toxicity 
incidence 20%

Table 4: A comparison of ULR modeling results based on full DVH and on recorded 
indices in FMIGRT patients. AUC rows show results of independent ULR modeling 
based on DVH and on recorded indices. Cross estimate of toxicity incidence was 
obtained by applying the ULR model derived from DVHs to recorded indices.
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Figure 1: The dependence of AUC of the ULR model on the dosimetric index. 
The analysis was performed on DVHs of FMIGRT patients. The optimum index 
was D25% and with the AUC=0.66; Dose in 2 Gy equivalent units.
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with a systematic posterior shift of the isocenter by as much as 5 mm, 
superimposed upon broadly distributed random errors. Our simulation 
of the systematic posterior shift of the isocenter in FMIGRT patients 
led to an estimate that a systematic setup error of this magnitude would 
have doubled the incidence of acute rectal toxicity. This estimate is 
qualitatively consistent with the data shown in Table 5. The average 
of four predictions of the incidence of toxicity in USGRT patients was 
27%, while the incidence of 54% was actually recorded.

The simulation of a uniform, posterior shift of the isocenter in 
FMIGRT patients predicted the incidence of acute rectal toxicity which 
was consistent with the incidence observed in USGRT patients, but it 
did not break the apparent correlation between planning dosimetry and 
the simulated toxicity. This result strongly suggests that the ultrasound 
patient positioning system was generating a systematic shift of the 
isocenter, superimposed with a broad random error, which is consistent 
with the findings of Foster et al. [29].

One may consider several confounding factors that could have 
affected the results of our study but none of these factors was likely 
to be significant. A possible bias in toxicity scoring between the two 
databases was unlikely because toxicities in both databases were scored 
by the same group of experienced physicians using CTCAEv4 criteria. A 
possible bias in the recording of dosimetric indices in the two databases 
was unlikely because treatment planning for all patients was done by 
the same group of dosimetrists and recorded indices agreed reasonably 
well with indices computed from DVHs in FMIGRT patients. The 
ULR model which was developed for FMIGRT patients could have 
been inaccurate because of the relatively low statistics in the FMIGRT 
group. An inaccurate model could explain the under prediction of the 
incidence of toxicity but it cannot explain a failure to fit a predictive 
model in a much larger USGRT database.

A database of 79 FMIGRT patients was sufficient to detect a 
correlation between planning dosimetry and acute rectal toxicity in this 
work. A statistical technique called power analysis [22] can be used to 
estimate the number of patients that would be recommended to ensure 
that one can reach statistically significant conclusions in an analysis 
which was similar to this work. Assuming the same correlation between 
dosimetry and toxicity that was seen in FMIGRT patients, the same 
incidence of grade ≥ 2 acute rectal toxicity of 20%, and the likelihood 
of falsely detecting a correlation which would be less than 5%, a cohort 
of 120 patients would be sufficient to ensure 80% likelihood that the 
correlation would be detected if one was present. A cohort of 200 
patients would be sufficient to ensure 95% likelihood of detecting the 
correlation if one was present. Fewer patients would be required if the 
incidence was greater than 20%, while more patients would be required 
if the incidence was less than 20%.

In summary, our study suggests that a correlation between acute 
rectal toxicity and treatment planning dosimetry in IMRT treatments 
for prostate cancer can be measured in a relatively small cohort 
of patients. Lack of such a correlation in clinical data should be 
concerning and motivate a review of the quality of delivery of IMRT 
treatments. One can argue that the systematic shift in the isocenter 
which is supported by our data could be detected through a change in 
the incidence of toxicity relative to the baseline. The baseline incidence 
of toxicity which would be expected in the case of perfect treatment 
delivery is not known a priori however, particularly in relatively new 
treatment protocols which use unconventional fractionation schedules. 

The methodology which was used in the present study could be 
implemented within existing commercial software platforms for 
radiation therapy. Many of these platforms (for example: Varian, Inc 

 

Mean 
Index 
Value 

FMIGRT

Mean 
Index 
Value 

USGRT

Estimated 
incidence 
of acute 

rectal 
toxicity in 

USGRT

Observed 
incidence 
of acute 

rectal 
toxicity in 

USGRT

AUC and 
Fit Quality 
(based on 
recorded 
indices) 
FMIGRT

AUC and 
Fit Quality 
(based on 
recorded 
indices) 
USGRT

D 1.8% 77.5 ± 1.7 
Gy

75.4 ± 4.4 
Gy 12%

54%

0.63 0.54
[0.48.0.78] [0.47,0.6]
P=0.037 P=0.8

D10%

64.9 ± 5.8 
Gy

68.4 ± 5.2 
Gy 29%

0.58 0.52
[0.43,0.72] [0.45,0.58]
P=0.045 P=0.82

D30%
42.5 ± 6.8 

Gy
52.5 ± 6.6 

Gy 37%
0.62 0.52

[0.47,0.77] [0.46,0.59]
P=0.084 P=0.78

D40% 34.6 ± 7.6 
Gy

47.4 ± 6.3 
Gy 30%

0.58 0.49
[0.43,0.74] [0.44,0.57]
P=0.317 P=0.85

Table 5: A comparison of FMIGRT and USGRT databases; ULR models derived 
from the FMIGRT database were applied to USGRT to estimate expected 
incidence of acute rectal toxicity in USGRT patients under an assumption that 
planning dosimetry was the only factor that influenced toxicity in both databases. 
ULR models were fit to hand extracted indices in both databases and AUCs for 
both databases are shown in the last two columns.

D 1.8% D10% D30% D40%

AUC
DVH based indices

0.57 [0.45, 
0.70]

0.63
[0.51,0.75]

0.64
[0.52,0.76]

0.64
[0.51,0.76]

AUC
recorded indices

0.58
[0.45.0.71]

0.64
[0.52,0.76]

0.64
[0.51,0.77]

0.63
[0.50,0.75]

Cross estimate of toxicity 
incidence 50.7% 49.0% 48.4% 47.9%

Actual toxicity incidence 47%

Table 6: Results of fitting of the URL models to the synthetic toxicity data based 
on the simulation of the 5 mm posterior shift of the isocenter. The AUC for models 
based on DVH based indices and hand extracted indices are shown in the first 
two rows. Cross estimate of toxicity incidence shows the estimate of incidence 
when a DVH based model is applied to hand-extracted indices. The actual toxicity 
incidence shows the incidence implied by the synthetic data.

Aria system) integrate the treatment planning dosimetry with the 
information on toxicity type and score. Such integration could enable a 
commercial “single button” implementation of the entire analysis that 
was carried out in this study. An analysis which was discussed in this 
work can be relatively easily extended to a multivariate analysis which 
includes patient specific characteristics. We have shown in a prior work 
[32] that patient specific characteristics are not only important for 
full characterization of the toxicity risk but may even be a dominant 
predictor of toxicity in some cases. A commercial implementation of 
the present work could lead to the development of an “expert system” 
which quantifies a risk for toxicity for patients who are treated within 
a particular institution, using treatment protocols which are specific to 
this institution.

Conclusion 
Modeling of acute rectal toxicity in radiation therapy for prostate 

cancer provides a quantitative measure of a correlation between 
planning dosimetry and this clinical endpoint. Our study suggests 
that an unusually weak correlation may indicate systematic flaws in 
treatment delivery which could be clinically significant. A combination 
of high incidence of toxicity and weak correlation between toxicity and 
planning dosimetry should be particularly concerning.
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