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Introduction
Cancer is a devastating disease that has affected millions of people,

consumed tremendous efforts in the treatment/care and is incurable.
Statistics from www.seer.cancer.gov show 14,140,254 people were
living with cancer in 2013 in US with 1,685,210 new cases projected
and 595,690 estimated deaths to occur due to cancer in 2016. Number
of people surviving cancer (measured as 5-year survival rate) has
increased by 18% (48.7% in 1975 to 66.9% in 2012) during the last half
century. This number appears to be small if we consider the
contribution of proactive care for example, early detections, and
attention to life style and aggressive chemical/radiation therapy and at
the same time stare at a bleak hope of any apparent breakthrough in
next 10 years. On the other hand, gain of even a small percentage in
the survival of cancer can be regarded significant considering its
complexity in terms of causes, types, organs affected, severity, origins
and metastasis each of which has made it very difficult to combat this
disease (system) [1]. For the sake of comparison, unlike AIDS, cancer
is not limited to a pathogen and immune system only and unlike
Alzheimer’s or Parkinson’s it is not restricted to one proteins and one
organ only. This is not to say other diseases are less complex but
certainly not as diverse as cancer. Hence, knowing well the challenges
in dealing with an intricate system and to develop a cure, the need for
extensive investigation in the area of cancer is imperative.

Drug Design for Cancer
Keeping the transcriptome (RNA) influence aside because of its

infancy in the field, we can generalize that: oncogenic stimuli by an
extrinsic carcinogen or intrinsic oncogene (proto oncogene/genetic
manipulation) gets transcribed in genome and manifests itself through
proteome. Literature is filled with examples of protein kinases and
signal tranducting protein molecules, under oncogenic conditions,
playing a pivotal role in the transformation of normal tissue leading to
poor prognosis. And precisely for this reason, proteins have been used
as targets for drug design against cancer and sometimes with good
success. One such textbook example is provided by drug design against
bcr-abl kinase that causes chronic myelogenous Leukemia (CML).
Tireless efforts by dedicated scientists resulted in the design of a
molecule ‘imatinib’ that inhibited bcr-abl kinase reducing the annual
CML relapse to 0.6% [2]. A careful analysis of relapsed tumors
indicated generation of mutated forms of bcr-abl kinase that were
refractive to imatinib inhibition. But diligent investigations lead to the
characterization of each bcr-abl mutant followed by modifications in
the design of original imatinib. This approach produced new inhibitors
of bcr-abl for patients with relapsed CML. Even the most resistant
mutants (T315I) were successfully inhibited by clever drug (AP24532)

design [3]. These examples therefore provide inspiration for discovery
of new protein targets in cancer and subsequent drug design against
them for a cure. Chaperones are a group of protein molecules that have
been vigorously targeted for cancer therapeutic development during
the last two decades [4].

Molecular Chaperones
Chaperones were identified around 1962 as proteins produced by

heat shock in Drosophilla [5] and soon a big family of these molecules
was discovered. They were thus called Heat Shock Proteins (HSP) and
differentiated on the basis of their molecular weight. For example,
HSP60 is a 60 kDa chaperone molecule. The name “chaperone” was
proposed by Ellis based on the protective nature of these proteins [6].
For simplicity, recent classification has grouped HSP molecules into
different families viz., Hsp90 (HSPC), Hsp70 (HSPA), Hsp60 (HSPD),
small Hsp (HSPB) and large Hsp (HSPH) [7]. Normal function of
chaperones is to fold nascent polypeptide chains or unfolded proteins
into their active conformation, [8,9]. They achieve this at the expense
of ATP hydrolysis. Each family is further composed of additional
members that help in carrying out concerted steps meticulously [10].
These supporting proteins are called “co-chaperones.” Co-chaperones
and many chaperones lack the ability to hydrolyze ATP and are unable
to fold protein on their own but at the same time they may bind to
client proteins and prevent unwanted aggregation or toxicity. In such
cases they are referred to as ‘holdases’ [11].

Molecular chaperones were identified as anti-cancer drugs since
early 1990s [12]. We will discuss anticancer drugs designed using
Hsp90 and Hsp70 as examples.

Hsp90
Hsp90 is a dimeric protein with each monomer consisting of three

domains; i) top nucleotide binding domain [(NTD) binds ATP], ii)
middle domain [(MD) binds substrate protein] and iii) bottom c-
terminal domain [(CTD) responsible for dimerization]. Hsp90 is
highly interactive protein exhibiting a huge list of protein partners
(https://www.picard.ch/Hsp90Int/index.php) that makes it difficult to
provide a concise mechanism. A typical Hsp90 cycle however involves
binding of the substrate (unfolded protein) either free or handed over
by Hsp70 system mainly to MD while NTD is in ATP state [13].
Subsequent binding by co-chaperones like p23, Sba1, Cdc37, p50 or
similar others stabilize the complex either by inhibiting ATP hydrolysis
or enhancing 90-substrate interactions. This allows substrate a chance
to regain physiological folding. Proteins like Aha1 then trigger ATP
hydrolysis and disintegration of complex leads to release of folded
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substrate. Hsp90 dimer still connected by CTD is ready to take new
ATP and undergo a fresh cycle. The folding cycle involves contribution
of many other co-chaperones that simply cannot be discussed here
[14].

Inhibition of Hsp90 causes accumulation of mis-folded oncogenic
proteins [15]. Hsp90 thus was one of the first chaperone targets used
for anti-cancer drug design [12]. Since then it has progressed further
and Hsp90 has recently been named an unlikely ally in the war on
cancer [16,17]. Its co-chaperones are equally deemed as targets. P23 is
among many of Hsp90 co-chaperone that is overexpressed in breast
cancer [18], is involved in prostate cancer through androgen receptor
activity [19] and is overexpressed in acute lymphoblastic leukemia
where it inhibits chemotherapy-induced apoptosis [20].

Since the first Hsp90 inhibtors geldanamycin and radicicol exhibited
anti-cancer property development of more drugs in this direction have
been designed [4,12]. More soluble and less toxic compounds like 17-
AAG, KOS-953, have shown promise in cancer treatment [21].
Celastrol interferes with Hsp90/Cdc37 complex inhibiting growth-
regulating pathway and is considered a promising candidate for
prostate cancer treatment [22]. Drug ‘gedunin’ binds to P23 and
restores the apoptotic pathways of malignant cells [23]. Drugs like
Retaspimycin (IPI-504), Ganetespib (STA-9090) are candidates in the
on going phase 1-3 clinical trials targeting Hsp 90 in various cancers
[24].

Hsp70
Hsp70 is the main workhorse of folding machinery in humans that

helps nascent or unfolded proteins to fold into biologically relevant
structure. In Hsp70 folding cycle first a client protein, either itself or
facilitated by Hsp40, binds to Hsp70 C-terminal substrate binding
domain (SBD) with ATP bound in its N-terminal Nucleotide binding
domain (NBD). A substrate/Hsp70/Hsp40 ternary complex is thus
formed [10]. Formation of this complex is accompanied by hydrolysis
of ATP into ADP. In the next step nucleotide exchange factors (NEF)
like (GrpE or Bag or similar proteins) induces exchange of ADP with
ATP in the NBD [25]. This step is associated with the release of
substrate possibly as folded active protein. If the substrate fails to fold it
enters Hsp70 cycle many times until it is successful otherwise it gets
tagged for degradation through CHIP -ubiquitin pathway. The system
also participates in apoptosis [26]. While Hsp70 and its co-chaperones
are believed to act in concerted fashion we have shown the individual
members can have differing effects on the substrate molecule [27].
Hsp70 cycle thus aimed to maintain homeostasis and the quality of
protein inadvertently or under duress helps healthy folding of
oncogenic proteome facilitating tumor genesis [28].

The first indication of Hsp70 involvement in cancer comes from its
overexpression in tumors [29-31]. Sometimes levels of chaperone
transcription factor (HSF1) are directly related to the severity ofcancer
[32-34]. In addition, Hsp70 suppresses tumor through senescence
pathways [35]. Hsp70, Hsp70.2 and mitochondrial Hsp70 when
inhibited induce apoptosis in breast cancer cells [36]. Over expression
of Hsp70 was found to be responsible for resistance to cell death in
pancreatic cancer [37]. Metastatic Hepatocellular Carcinoma cell lines
have been reported to exhibit higher levels of Mortalin (mitochondrial
Hsp70) and Mortalin-mRNA [38].

Our NMR work in recently published article showed development
of two drug like molecules i) Telmisartin that disrupts Hsp70/GrpE
interaction and Zafirlukast that disrupts Hsp70/Hsp40 interaction

[39]. In another recent article again our NMR studies showed
development of a modified form of MKT-007, an anti-cancer drug,
that was 3-fold more active than original MKT-007 on breast cancer
cell lines MDA-MB-231 and MCF-7 with biological half-life in
microsomes improved 7-fold over the original compound [40]. Thus,
these initial findings clearly indicate there is potential for anti-cancer
drug development targeting Hsp70 system and systematic
investigations in this direction could by highly applicable in finding
cancer cure. Further, other chaperones besides Hsp70 and 90 have also
been targeted for drug design [41,42].

In conclusion, chaperones appear to cross the pathway of a
transforming cell at many levels and in many forms and some of their
inhibitors have advanced in clinically trials. These facts are convincing
reasons to pursue rational drug design using chaperones as anticancer
therapeutic targets.
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