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Introduction
In macroecological studies, researchers require to utilize a 

great number of landscape digitized maps of objects. For example, 
distributional ranges of species [1-3], the zonation of different 
biogeographic regions and ecoregions [4,5], NDVI vegetation index 
[6,7] and so on. However, a potential problem when combining these 
digitized maps together for performing subsequent analysis is that they 
are typically produced from different spatial resolutions, which may 
lead to the misinterpretation of the macroecological patterns [2,8].

Although the mixed-resolution problem of spatial landscape maps 
is not hard to image and may be a common sense to some extent, 
there is not a systematic and quantitative assessment of the impacts of 
utilizing varying-scaling digitized maps on influencing spatial patterns 
of focusing objects (e.g., species distribution, for which I will discuss 
hereafter) in previous literature. Thus, it would be worthy to perform a 
holistic assessment of the multi-scaling issue when one utilizes digitized 
maps from different sources and with various spatial resolutions.

In the present study, a simple algorithm was developed for 
reconstructing varying-resolution distributional cells of species 
distribution on the basis of original distributional points. The scaling 
algorithm could generate multi-resolution species distribution data, 
which could be used to infer macroecological patterns and compared 
to those from true distributional points.

The central purpose of the present report is to evaluate the 
impacts of mixing multi-resolution distributional data of species into 
the whole data set on influencing macroecological patterns. I will 
investigate how the degree of difference between the true and estimated 
macroecological patterns is. Without further clarification, the true 
macroecological patterns refer to the patterns constructed from the 
original distributional points of species at pixel spatial level (the highest 
resolution). By contrast, the estimated macroecological patterns refer 
to those constructed from the distributional cells of species at various 
spatial resolutions. 

Materials and Methods
Generation of distribution points using Poisson cluster 
process

The distribution of species across the boundary was generated 
using Poisson cluster process, following the method illustrated in the 
previous work [9]. In brief, I created a random number of parental 
points for a species using a Poisson process with intensity ρ . Then, each 
parental point produces a random number of offspring points, drawn 
independently from one of any probability models. Here, I considered 
the offspring numbers were drawn from a geometric distribution with 
parameter 0.01. 

The positions of offspring points relative to their parental point 
are drawn randomly from a bivariate probability density function
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location of the parental point in the study grid cells. 2σ  controls the 
dispersion parameter of the data points. After generating all offspring 
points for the species, the parental points are erased to form the 
distribution points of the species across the boundary. I simulate 100 
species and their distribution points in a grid-cell system with cell sizes
200 200× . The distribution points of each species thus were analyzed to 
obtain the range cells of the species with a new spatial resolution using 
the scaling method introduced below.
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Abstract
In this brief report, a simple scaling algorithm was developed for reconstructing range cells upon the original pixel-

level distributional points of species. The algorithm could generate the distributional cells of species that covers all the 
original distributional points of species, but being with varying spatial resolutions (i.e., different sizes of the smallest 
operative area unit). As such, I could quantitatively evaluate the macroecological patterns (including richness, rarity 
hotspots, and the influence of spatial autocorrelation on structuring species’ richness and rarity patterns) on the basis 
of these varying-resolution species distributional layers. Resultant diversity patterns thus could be compared to the 
true patterns directly derived from species’ original distributional points. The present theoretical results showed that, 
the macroecological patterns identified from varying-resolution data could be basically consistent to those from the 
true distributional data, as long as there were not many multi-scaling distributional layers inside the whole dataset. 
However, the estimated macroecological patterns would be far departed from the true ones when there were a 
remarkable number of multi-scaling layers inside. Thus, I argued that the varying-resolution data could be utilized 
but with some cautions so as to accurately reveal ecological patterns and interpret the relationship between species 
diversity, distribution and environment.
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Construction of varying-resolution distributional cells of 
species using original distributional points

Imaging that a sampling area is composed of pixel points 
(since I have a grid-cell system with 200 200× , thus the total pixel 
number=40000) and some pixel points were marked by 1 when the 
species’ original distributional points were congruent with these points. 
In contrast, other pixel points were marked by 0, indicating that the 
absence of species. This map showed the original distributional points 
of species, having the highest spatial resolution (pixel level).

The scaling algorithm assigned the equal spatial cell units into the 
sampling area. The size of the cell unit is determined by the resolution 
(should be an integer). These units jointly cover the all the area and 
no overlapping of different units is allowed. As such, all the pixel 
points bounded by a cell were marked with 1 as long as at least one 
distributional point of species was found inside that cell. In contrast, 
if no distributional points were found inside, all the pixel points inside 
the cell were marked by 0, indicating absence of the species. If the cell 
covers the edge of the sampling area (thereby some part of the cell may 
situate out of the area), I only consider the part inside the whole area. 

By this means, after checking all the cells across the whole area, 
all the cells and their accompanying pixel points (all marked with 1 
if species is present, 0 if absent) were stored as a new distributional 
layer, showing the distributional pattern of the species at a new given 
resolution (indicated by the spatial unit). This new distributional 
map for the species with a new spatial resolution (in comparison to 
the original map at pixel spatial level) is generated and mixed into the 
original data set to generate a multi-resolution data set. 

For different species, different resolution parameters were 
randomly drawn (following a certain probability density function) 
to generate varying-resolution distributional maps of species. These 
multi-resolution maps were then utilized to generate macroecological 
patterns. As a comparison, the macroecological patterns 
straightforwardly derived from original pixel-level distributional points 
of the species were analyzed as well, which were quantified as the true 
macroecological patterns to check the disparity of patterns inferred 
from multi-scaling distributional maps.

 I used a Poisson distribution to generate the resolution parameter 
for different species. Thus, for each species, the reconstructed 
distributional map having the resolution being equal to ( ) 1Poisson λ + . If 
resolution>100, the distributional map is identical to the original pixel-
level distributional map. Otherwise, when the resolution≤ 100, the new 
map is a coarse-size representation of species’ original distribution. For 
example, when the resolution=100, the coarse-size map will have 100×
100 pixels. Because each resolution value is randomly drawn from the 
Poisson probability, thus I could readily obtain mixing multi-resolution 
distributional layers in the whole data set, in which some will have 
the original pixel-level distribution without scaling, while others have 
coarse-resolution distribution after scaling. I set the mean parameter λ
=100, 80, 60, and 40 respectively to perform the comparison of different 
degrees of multi-scaling patterns and their impacts on reconstructed 
macroecological patterns. 

Analysis of macroecological patterns

 I measured the following macroecological patterns, including the 
species richness hotspots and rarity hotspots [10-12]. These features 
are widely studied across different spatial resolutions so as to figure out 
the key areas as conservation priorities [13]. They are also employed to 
reveal the environment-diversity patterns [14]. 

 I further analyzed spatial autocorrelation patterns using the true 
distributional points and the varying-resolution distributional cells. I 
evaluated the impact of spatial autocorrelation on structuring richness 
and rarity hotspots of species using an autoregressive model [15–17].

y Wyρ ε= +                                      (1)

Where W is the row-standardized weighting matrix, ρ is the 
autoregressive parameter (we set 0 1ρ≤ ≤ ) and ε  is the error vector. 
This model was fitted by maximum likelihood procedures. Squared 
correlation between the observed richness ranking y  and the estimated 
ŷ Wyρ=  gives the pseudo- 2R  of the model, showing the proportion of 
explained variance attributed to the spatial autoregressive process.

There are lots of possible weighting matrices W, the simple one is 
the matrix identical to the one defined in Moran’s I formula as,

1 ,  is within a given distance class
0 otherwiseij

i j
w 

= 


                   (2)

A preliminary analysis showed that the distance class is set to 
2 could give a moderately high pseudo- 2R  and low AIC values. As 
such, the W matrix is derived from the distance class 2 across different 
scenarios.

A comparison of macroecological patterns

 For performing the comparison of macroecological patterns 
generated using varying-resolution maps and true distributional pixel 
points of species, I considered the Pearson’s correlation test [18] to 
compare the results generated from range cells and original points. 

a) b)

d)c)

e)

Figure 1: Richness hotspots patterns for 100 species using a) the original 
distributional points and reconstructed multi-resolution range cells with mean 
of resolution parameter b) λ =100, c) λ =80, d) λ =60, e) λ =40.
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that increasing resolution parameter λ  could result into the reducing 
correlation coefficient r (as showed in the correlation values presented 
in the legend of Figure 4).

A comparison on the role of spatial autocorrelation on 
influencing species richness and rarity

Under different multi-resolution scenarios, it is found that the 
influence of spatial autocorrelation varied accordingly (Table 1). For the 
cases that species’ distributions have low mean resolution parameterλ  
(meaning the resolution is low), the influence of spatial autocorrelation 
was stronger for either rarity or richness patterns (indicated by the 
explained variance 2R  in the autoregression model). However, when the 
distributions of species have the higher chance of keeping their original 
pixel distributional points (i.e., higherλ ), the influence of spatial 
autocorrelation was reduced in general. Furthermore, the resolution 
parameter λ  has a nonlinear relationship with the autoregression 
model coefficient ρ  (Table 1).

Overall, the explained variance 2R  for different kinds of multi-
scaling datasets is always larger than 0.5, indicating that spatial 
autocorrelation played an essential role in structuring species richness 
and rarity patterns. 

Results
A comparison of richness and rarity hotspots

Under different multi-resolution scenarios, it is observed that the 
hotspots patterns could be basically congruent among different multi-
resolution distribution of species. As showed in the correlation values 
presented in the legend of Figure 2, there is a nonlinear relationship 
between mean resolution parameter λ  and correlation coefficient r on 
richness hotspots patterns. Increasing resolution parameter λ  could 
not always result into the reducing correlation r, contradictory to my 
initial prediction. However, for rarity hotspots patterns, I did observe 

c) d)

b)

d)

d)

d)
c)

a) b)

Figure 2: The relationship of richness hotspots across the whole area from original distributional points and multi-resolution range cells: a) correlation coefficient 
r=0.563, P=0. Mean of resolution parameterλ =100; b) correlation coefficient r=0.18, P=0,λ =80; c) correlation coefficient r=0.16, P=0,λ =60; d) correlation coefficient 
r=0.27, P=0,λ =40.

Richness Rarity

Data ρ AIC 2R ρ AIC 2R
Original 0.001524 21334.3 0.572595 0.00171 -12330.4 0.567422

λ =100 0.001814 23625.66 0.61562 0.001631 -13953.2 0.501253

λ =80 0.003846 27587.93 0.854435 0.002493 -17104.8 0.738656

λ =60 0.003015 28533.39 0.80411 0.002448 -17140.4 0.727141

λ =40 0.002071 28386.11 0.699919 0.00205 -17098.2 0.692105

Table 1: Influence of spatial autocorrelation on species’ spatial richness and rarity 
patterns derived from varying-scaling distribution information of 100 species.
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Discussion
 As showed in the results, I found that there were basically emerging 

disparities between the true and estimated macroecological patterns. 
When there are still a lot of distributional maps of species kept in original 
pixel-resolution level in the whole data set, the discordance between the 
true and estimated patterns is minor. As such, my study showed that for 
keeping the results being consistent, the multi-scaling data sets must be 
transformed and rescaled so as to keep in line with their resolutions. By 
this means, the resultant analysis of macroecological patterns could be 
more reliable and stable without changing a lot.

 When the average resolution λ  of the data becomes lower, the 
resultant macroecological patterns showed inflated patterns, indicating 
that the variation of the data is reduced greatly. As such, I found that 
the signals of spatial autocorrelation are much stronger (Table 1). In 
contrast, the variation of the data is only able to be reflected by using 
low-resolution or pixel-level landscape maps. As showed in Table 1, 
the variation of the data becomes highest at the pixel-level of the data 
(consequently the explained variance 2R  was lowest for the pixel-level 
distributional data). Conclusively, choosing the small spatial-resolution 
data (highλ ) for ecological studies seemed much better than those 
large spatial-resolution data (lowλ ), if one only tries to capture and 
analyze the variation of the landscape data as much as possible. 

 As the implications, it would be valuable to further assess the 
impacts of multi-scaled data on inferring the relationships of species 

distribution, environment and space. Thus, it is required that one 
could construct species distributional patterns under the constraint 
of environmental gradients. As such, the Poisson cluster model used 
in my study should be modified to accommodate the influence of 
environmental forces. Constrained distribution of species under 
environmental and spatial limitations would offer new theoretical 
insights into the environment-diversity relationships. Also, it could 
help us better quantify how the interaction of niche (i.e., environment) 
and neutrality (i.e., space) could result in different patterns of species 
distribution.

 In summary, the present study offered some information on the 
impacts of varying-resolution spatial layers influencing macroecological 
patterns. Basically, when there are not many multi-scaling species 
distributional layers inside the whole dataset, the resultant richness and 
hotspots patterns were basically consistent with those from the original 
true distributional points (high resolution parameterλ ). However, 
when there is an increasing number of multi-scaling distributional 
layers (lowλ ) for the analysis, there will be an increasing disparity of 
the macroecological patterns for the multi-scaling and true data: the 
correlation between the true and estimated patterns will be much lower 
(Figures 1-4), and the influence of spatial autocorrelation will be much 
higher (Table 1: 2R ).
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