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Abstract It is shown in this paper that the structural
configuration of music exactly parallels the structural
configuration of the human body. Music and biological
systems share time as a common denominator, since both
derive from, and exist in the time dimension. Music and
biological systems also share as a common denominator
certain features of self-similarity that can be quantified by
power-law formulations. Discussed herein is how further
investigations into these two common features—self-
similarity as an architectural property of both music and
the human body, and space-time as common dimensions
of perception—can provide some insights into specific
mechanisms by which the six elements of music—rhythm,
melody, harmony, timbre, dynamics, and form—succeed
in eliciting profound physiological responses. Once these
mechanisms are understood, they can be exploited to
develop diagnostic protocols which, in turn, can provide a
scientific basis for using music as a clinical intervention in
a variety of diagnosed populations.

Keywords music; anatomy/physiology; space-time;
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1 Introduction

There is no question that music derives from and exists in
the domain of time (more accurately, temporal frequencies).
Indeed, rhythm—the “beat” ( pulse), the “tempo” ( pace)
and “rhythmic patterns” ( pulse trains)—is the most basic
element of music (Schneck and Berger [12]). Sound
frequency establishes musical pitch; frequency ratios
define musical intervals (and associated harmonics and
overtones); frequency sequencing produces melodic lines;
super-imposed frequency series give sound its quality
(timbre), and so on. Thus, whereas there is definitely a
spatial architectural aspect to the structure of music, its
existence in the dimension of time plays a major role in
terms of physiologic responses to musical inputs. That is to
say, there is also no question that biological systems, too,
exist and function in the domain of time (Schneck [9]).

Indeed, biorhythms (circadian, circannual, etc.) are
perhaps the most basic element of physiology; and nerve
action-potential frequencies, morse-code-like frequency
patterns, and super-imposed frequency series that derive
from nerve networks determine physiologic responses to
light, heat, sound pressure, and so on. Thus, there is no
doubt that the two—music and biological systems—share
time and temporal frequency as common denominators,
which already establishes a symbiotic connection between
them. However, what needs to be worked out in greater
detail are specific mechanisms by which

(a) the time-dependent elements of music, interact with

(b) the time-dependent functional processes in biological
systems, to

(c) elicit profound effects that can be exploited for many
purposes, including clinical intervention in a variety of
diagnosed populations (Schneck and Berger [12]).

A great deal of good work is being done by scientists
endeavoring to identify these mechanisms, rigorously
quantify them, and apply them for specific purposes
(Schneck and Berger [12], and, see also, among many
others, Zatorre and Peretz [17] and Hodges [6]). However,
as of this writing, success in this effort still depends on the
need to know much more than is currently known about
the structure and function of biological systems such as
the human body. As described in the next section, some of
the connections between music and physiologic function
are obvious; others, as we will see, are more subtle, but no
less significant. With respect to the latter, it will be shown
in this paper that some basic insights can be gained by
relating physiologic time considerations to anatomic spatial
considerations, and vice versa, that is, extrapolating to what
is happening in time from what we learn about what is
going on in space. It is further suggested that a plausible
explanation for these space-time and music/physiology
connections is embedded in the general concept of self-
similarity.
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2 “Obvious” connections between music and physiologic
function

The hearing architecture of humans is generally capable of
perceiving sound energy in the frequency range from 20
to 20,000 cycles per second (Hertz, Hz). Within this range
lie the human singing voice (80–1050 Hz), speech sounds
(300–3000 Hz) and a wide variety of musical instruments,
encompassing the ten-octave range from C0 (16 Hz) to C10

(16,384 Hz), but more commonly, in the tempered range of
the 88-key piano, that is, from A0 (27.5 Hz) to C8 (4166 Hz
based on A4 = 440 Hz).

What ‘jumps out’ at one is the one-to-one correspon-
dence of these frequency ranges with, specifically, neural
action potentials, synaptic transmission rates, and physio-
logical information-processing rates that typically fall in the
range 0.5–2500 cycles per second. Now, it is true that the
overall range of cyclic bodily functions is actually much
wider than the range of human hearing. For example, cardio-
vascular, respiratory, and other “vital signs,” along with gait
patterns and activities of daily living, typically extend the
lower frequencies well below 20 Hz; and many biochemical
reactions proceed at rates well above 20,000 Hz. However,
other biochemical reaction rates, together with most cellu-
lar transport processes and neuro-musculo-skeletal periodic-
ities do correspond to musical frequencies (Schneck [9,10]).

Moreover, whereas many physiologic time scales are
endogenous to the body (i.e. independent of external
cues), and are autonomic (i.e. “self-governed,” not driven
by ambient rhythms), they are, nevertheless amenable
to being influenced (driven) by external stimulation that
can derive from the elements of music (Schneck and
Berger [12]). For example, because of the approximately
0.0005 s (range 0.4–1.0 ms) that it takes for a nerve to
“reload” enough to “fire” again once it has completely
discharged (called the absolute refractory period), nerves
are generally constrained to fire, at most, 1000–2500 times
per second—corresponding to musical pitches from around
B5 (987.767 Hz in a tempered scale based on A4 = 440 Hz),
to D#

7 (2489.016 Hz). However, in “real life,” maximum
neural transmission rates beyond 700–800 action potential
“spikes” per second (≈ F5(698.457 Hz)−G5(783.991 Hz))
are rarely encountered, and most neurons fire at rates closer
to 300 temporally-sequenced impulses per second, which
corresponds to an A-440 pitch of around D4 (293.665 Hz).
Furthermore, when we take into account attenuation and
consolidation through nerve networks, and sorting and
filtering by the Reticular Activating System (Schneck and
Berger [12]), it is more likely that responses derived from
any given input modality result from “higher centers”
having actually attended to and processed only 50, to as
few as 5 integrated pieces of information per second, per
modality, with corresponding time scales on the order of
20–200 ms. The significance of these numbers is that they

take us down to the threshold of human hearing, and are
consistent with the facts that:

• Fast-twitch skeletal muscle fibers achieve maximum
contracted lengths in 15–50 ms (time-to-peak) following
a single stimulation (Schneck [10]);

• slow-twitch muscle fibers require 60–120 ms to reach
peak contraction (Schneck [10]);

• it takes about 100 ms to establish a good image on the
retina;

• 50–100 ms are required for the hearing apparatus to
“lock onto” and identify an incident sound frequency;

• a typical blink is completed in about 200 ms;
• at rest, the human heart actively completes a single

“beat” in about 250 ms, passively “resting” for some
500 ms in-between beats;

• it takes about 5 s to inhale (2 s) and exhale (3 s) once, at
rest;

• arterioles contract and relax in 2–8 s cycles.

Of further significance here is the concept of phase regu-
lation—an optimization scheme whereby the activity of one
set of anatomical structures is coordinated and synchronized
with that of another (leading to a phenomenon known as
co-acting), in order to minimize the energetic demands of
physiologic function.

In phase-regulation, we find that the operating fre-
quency bandwidths of individual organs or tissues are
not independent of one another. Rather, they are co-
dependent—meaning that the operating frequencies of said
organs and tissues are related to one another by, in most
cases, simple whole number ratios. This is not unlike those
frequency ratios that characterize musical intervals, such
that, like music, there is most likely a type of harmonic
order to physiologic function (Alexjander and Deamer [1]).
As an illustration of phase regulation, consider that up to
30% of the heart’s energy is conserved by allowing

• the ejection of blood from this organ to be timed so that
it is in-phase with the inherent rhythmic oscillations of
the elastic arterial system and

• the beginning of the respiratory cycle to be timed to coin-
cide with the end of one of the ejection phases of the
cardiac cycle.

Such energy-conservation is enhanced by maintaining the
ratio of the cardiac period to the arterial pulsation period at
approximately 2:1 (a perfect octave in the musical realm!).

Consider further that the musculature of the stomach
“cranks out” a new peristaltic wave every 20 s, but the
wave lasts about a minute, so that three waves at a
time travel down this organ, and the ratio of peristaltic-
duration to muscular-period is about 3:1. Moreover, for the
cardiovascular and respiratory systems, the whole-number-
ratio for several system parameters is optimized at 4:1
(a “double-octave”). For instance, although during the day,
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the ratio of pulse-rate-to-respiration-rate can vary from 2.5
to 7.0, it equilibrates to a value of 4.0 between midnight and
3 a.m., when physiologic function is optimized according to
a so-called nightly normalization of the rhythmic functional
order principle that prevails during restful sleep. In fact,
harmonic co-acting (synchronization) of all physiologic
processes is especially prevalent during sleep—as is a
decrease in physiological complexity, commensurate with
the absence of conscious activity. This allows harmonic
ratios to be the simplest ones possible, thus reducing and
optimizing the energetic demands of the organism. Result: a
state of physiologic consonance that also optimizes healing.
On the other hand, stress, during one’s wakeful hours
upsets this balance/equilibrium, leading to physiologic
dissonance, with all of its adverse consequences on health
and well-being.

Bottom line: there are some obvious connections
between the elements of music—rhythm, melody, harmony,
timbre, dynamics, form—and physiologic function, as
embedded in biorhythms that include, for example,

• the cyclic beating of the heart;
• periodicity of the firing rates in neurons;
• rhythmic breathing patterns;
• oscillating peristaltic movements in the gastrointestinal

system;
• diurnal variations in body temperature;
• timed release of urine (bladder function) and fecal

wastes (rectal function);
• timed release of endocrine hormones to correspond with

their role in circadian metabolic processes;
• sleep/wake cycles;
• periodic 90-min sleep stage cycles;
• female menstrual cycles;
• patterns of gait;
• the 4-to-6-hr cravings for food (hunger cycles).

But the connections actually go much deeper than that,
as we glean from an examination of spatial anatomic engi-
neering design principles.

3 Spatial considerations that can be deduced by examin-
ing the human arterial system

Back in the mid-1970’s, I set out to develop an engineering
model of the morphometry of the human arterial system
(Schneck [11]). So, off I went to map, for several anatomical
vascular beds, the following:

(i) branching configuration, B (e.g. B = 2 defines a bifur-
cating network, B = 3, a trifurcating one, etc.);

(ii) total number, N , of branching generations per vascular
tree, where a “generation,” m (m = 0, 1, 2, . . . , N ), is
defined to be any one of a number of successive down-
stream branchings—from the parent vessel (m = 0)

spawning a specific vascular bed, to the downstream dis-
tribution of capillaries (m = N ) that derive from that
particular parent vessel;

(iii) total number, n, of daughters in any generation m;
(iv) mean internal-diameter, Dm, and characteristic length,

Lm, for a “typical” blood vessel in generation m.

I postulated (see later) that Dm and Lm could be
expressed in terms of parent dimensions, D0 and L0 by the
power-law expressions: Dm = D0r

m and Lm = L0R
m,

where “r” represents a characteristic scaling factor for
internal diameter, and “R” a characteristic scaling factor
for mean vessel length; n, B, and m were also made to fit
the power-law equation: n = Bm.

After I accumulated an enormous amount of published
data for the following circulatory pathways:

• pulmonary—the lung, specifically, its blood-processing
pathways,

• renal: the kidney,
• coronary: the heart, specifically, its feeding network,
• bronchial—the lung again, but this time, its nourishing

pathways,
• and cerebral: the brain

an interesting pattern began to emerge which, in fact, carries
over one-to-one into the time domain, and into music, as
we will see later. That is to say, with remarkable consis-
tency, r fell within the narrow range 0.600 (for the coronary
circulation) and 0.616 (for the renal circulation). Given the
margin of error in both accumulating the anatomical data
and calculating these values for “r”, there was a glaring
similarity between the values of the scaling factors, r, and
the value of a scaling factor that routinely appears in studies
of self-similar systems, that is, the factor r = 0.618.

Actually, 0.618 is rounded-down from the more exact
irrational number [2 ÷ (1 +

√
5)] = 0.618033989 . . . =

(1/x), where x = 1.618033989. The latter is the positive
solution to the equation, x2 − x − 1 = 0. This equation
derives from the observation of the Greek mathematician
Euclid (c. 365–265 B.C.) that, given any two quantities, x
and y, where x > y, the ratio of (x + y)-to-x is equal to the
ratio of x-to-y, that is, [(x + y)/x] = (x/y), which, for y

normalized to unit value, yields, exactly, the above quadratic
equation. Any two quantities for which these ratios hold are
said to be in Golden Ratio, which is the irrational number,
x = 1.618033989 . . ., whose reciprocal, as shown above,
is equal to (x − 1), that is, (1/x) = (x − 1) = 0.618 . . .
(note that this relationship, too, yields the above quadratic
equation).

As shown further by a leading European mathematician
of the late Middle Ages (c. 1202), Leonardo of Pisa (also
known as Filius Bonacci), the Golden Ratio also happens to
be the limiting value of sequential ratios in the numerical
series, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 . . . . In this series, the
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numbers after 0, 1 obey a recursion formula, that is, each
successive number is the sum of the previous two: 1 = 0+1;
2 = 1 + 1; 3 = 1 + 2; . . . , aj = aj−1 + aj−2 for j > 2.
Moreover, as the series progresses, the ratio of each number
to its immediate predecessor begins to oscillate around, and
eventually approach x as a limiting value, for example, 5 ÷
3 = 1.6667, 13 ÷ 8 = 1.625, 34 ÷ 21 = 1.619, 55 ÷ 34 =
1.6176, and so on.

More formally, Fibonacci Numbers, as they are now
called, are defined by the series: F (n) = (1/

√
5)[φn − (1−

φ)n], n = 0, 1, 2, . . . ,∞; and φ = 1/2(1+
√

5) is precisely
the Golden Ratio.

4 The relation of Fibonacci ratios to musical intervals

Moving from anatomical space considerations into time and
musical considerations, observe, first, that the Fibonacci
ratio, F (3)/F (2) = 2 : 1 defines the frequency-ratio of the
tempered musical octave, F (4)/F (3) = 3 : 2 defines the
musical “perfect fifth” interval, F (5)/F (4) = 5 : 3 defines
the musical “major 6th” and F (6)/F (5) = 8 : 5 defines
the musical “minor 6th”—all consonant frequency-ratios
(musical intervals) that are pleasing to the human hearing
apparatus. This one-to-one correspondence between low-
number Fibonacci-ratios and consonant-musical-intervals
lends further credence to the intimate connection between
physiologic function and the basic elements of music—one
that may be rooted (at least in part) in the underlying self-
symmetry that prevails in the human body across various
scales of perception (Schneck and Berger [12]).

The Golden Ratio appears frequently as a geometric
scaling-parameter that characterizes systems displaying an
inherent self-similarity. Indeed, many investigators actually
associate the Hausdorff (or Hausdorff-Besikovich; see later)
dimension strictly with a fractal, space-filling dimension;
but the relationship of this parameter to time and musical
intervals, and through them, to human physiology, has not
yet been entirely explored. It definitely deserves further
consideration.

5 Geometric self-similarity in nature

Consider the following question: what attribute do the:
retina of the eye, kidney urinary-collecting-tubes, lining of
the gastrointestinal tract, brain, bile-ducts, placenta, lungs,
various neural networks . . . and . . . trees, hearts, coral
formations, coastlines, turbulent flows, cumulus clouds . . .

all share in common?
Answer: When examined with stronger and stronger

magnifying lenses, the smaller-scale structures appear
remarkably “similar” to the larger-scale forms, in that, all
relative proportions are uniformly preserved at any scale of
observation. That is, basic patterns within a given level-of-
perception are maintained across all magnification factors,

resulting in a spatial/temporal/functional ordering that is
called proportional self-similarity. Strictly speaking, by
“self-similarity” we mean that, because of underlying phys-
ical constraints—such as minimum-energy considerations
and optimization schemes (Schneck [10]) that prevail—
independent of the size of the unit of observation—scaling
relationships in biological (and other) systems require them
to “look roughly the same” at any level of observation. That
is to say, there is an infinite nesting of structure on all scales-
of-perception, such that all of them must have consistent
proportions when compared to one another across all such
scales-of-perception. When the structure involved has an
irregular geometry, it is called a fractal; and an important
defining property of fractals is their self-similarity.

Based on my results for the arterial system (and related
findings of many other investigators; see, e.g., West and
Goldberger [16], Eberhart [3], Bassingthwaighte [2]
and Marques de Sá [7]), there is a clear suggestion that
the vascular system is no exception, that is, it is a self-
similar system. In that respect, “R” too—though showing
(compared to “r”) somewhat wider variability among
vascular beds (see later)—still had values between 2/3
(for the pulmonary circulation) and 3/4 (for the coronary
circulation), suggesting at least some degree of constrained
self-similarity. The former scaling ratio, (2 ÷ 3) is equal to
[F (3) ÷ F (4)], and the latter, (3 ÷ 4) = [F (4) ÷ F 2(3)].
Indeed, anatomical/physiological-self-similarity has been
shown to prevail in such highly-organized human systems
as the following (West and Goldberger [16], Eberhart [3],
Bassingthwaighte [2] and Marques de Sá [7]):

• the tree of airway passages that progressively branch
from trachea (wind pipe) to the alveoli of the lungs; in
this branching network, average bronchial-diameter fol-
lows an inverse power-law;

• the structure and organization of connective tissue;
• many nerve networks;
• the configuration of glandular duct-work;
• the cochlea, which retains its original proportions while

spiraling in logarithmic, “snail-shell” fashion to form
the cavity of the inner ear that houses auditory nerve-
endings. Again, we point out the relationship of the geo-
metric self-similar configuration of the hearing appara-
tus to musical-intervals in time; an observation worthy
of further study.

6 Self-similarity and power-law formulations

As a spatial, anatomical engineering design principle, it
appears reasonable to declare that, in ratios of longer-
to-shorter dimensions (or, perhaps, bigger-to-shorter
time scales), or in ratios involving growing numbers, the
human body is a self-similar system, showing generalized
Golden-Ratio/Fibonacci-scaling proportionalities. Further
confirmation of this lies in the fact that power-law
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relationships—which typically characterize self-similar
systems—are highly successful in describing the structure-
and-function of the human body (Schneck and Simanowith
[13]). Thus, it is not surprising that such power-law
formulations do provide very effective paradigms to model
and quantify both nonlinear anatomic complexity (including
scaling laws), and nonlinear physiologic complexity
(including constitutive laws that define the behavior of
physiologic tissue), which explains why such a paradigm
was assumed in this study.

In self-similar systems, any given parameter, α, defining
a property/characteristic of that system, can be related to
another one, β, by a scaling-law of the form: α = βk, where
k = (log α)÷ (log β) is the “dimension” of the scaling-law,
known as the previously-mentioned Hausdorff dimension.
As a simple example, suppose α0 represents the geomet-
ric property (length, area, or volume measure) of an object
residing in Euclidean space having dimension k. Then, if
we reduce the linear size of this object by the scaling factor,
β—that is, multiply each linear measure by the factor [1/β]
in each spatial direction—then its geometric property (mea-
sure, α) would increase to “N” times the original, that is,
α = Nα0, according to the power-law relation, α = βk, so
that, N = βk ÷ a0.

Allowing k to take on both integer and fractional
values gives it sufficient mathematical degrees-of-freedom
to account for the fact that—in addition to the order-
ing constraints that are embedded in the “principle
of similitude”—realistic models of anatomic design,
as mentioned earlier for the parameter “R,” must also
include the complementary “principal of variability” that
typically accompanies such order in biological systems.
One can call the latter a structured randomness (or
“chaos”) that is accounted for by applying weighting
factors to the consistent proportionalities observed on
different scales-of-perception. That is to say, examined
in greater-and-greater detail, self-similar patterns reveal
an increasing degree of complexity—devoid of a single,
constant, “transmutational” scaling-factor—that is, the
patterns are structurally heterogenous (i.e. “noisy”) across
scales-of-perception. Let’s see how this works, again, by
examining the human cardiovascular system, and then
extrapolating to the time domain.

Recall from our earlier discussion that self-similarity
derives from the need that physical systems have to adhere
to certain underlying constraints—regardless of the size
of the unit of observation. Thus, when blood is pumped
through the anatomical architecture of the cardiovascular
system, at any level of observation the pumping mechanism
is constrained to adhere to an optimization principle
for energy expenditure. This need to economize on
the “cost” of pumping establishes specific, self-similar
vascular branching patterns that prevail across all N

generations (Fung [4]). But in the smallest blood vessels
(microvasculature) an additional requirement must be
met, which is to optimize as well molecular diffusion and
transvascular transport mechanisms across the vessel wall.
This introduces the need to have—specific to this particular
level of the cardiovascular system—an additional constraint:
the largest possible total surface-area-of-contact between
the lateral walls of the microvasculature and the surrounding
interstitial fluid, balanced against the amount of time that
blood actually spends in the microvasculature. In other
words, to optimize the transport process we desire to have
the largest available lateral surface area, and the slowest
possible perfusion rate through the microvasculature.

Thus, we find that the arterial system meets this
additional need by creating a self-similar branching
network that progressively generates more-and-more,
smaller-and-smaller vessels as we move downstream from
the heart (Schneck [11]). The cumulative cross-sectional
area, A, of the entire arterial system (i.e. all n vessels)
gradually increases at each generation, m, of vessels;
thus creating a diverging flow that slows down the mean
velocity, v, of flow, Q, according to the conservation of
mass relationship for incompressible fluids: Q = Av.
That is to say, since Q is constant (on the order of 5 liters
per minute), flow velocity, v, gradually slows down as A

increases—ultimately to some 800 times its original value—
thereby satisfying the time-constraint for optimization of
transport in the microvasculature. Eventually, more than
16 billion capillaries—each having a thin (0.1–1 μm) wall,
and measuring 3.5–10 μm in internal-diameter, by 0.5–
1.1 mm in average-length, where the mean velocity, v, in
any one of the smallest vessels of the microvasculature is
on the order of 0.4–0.5 millimeters per second—provide a
microvasculature transmembrane surface area totaling up to
560 m2, thus satisfying as well the maximum-area constraint
for optimum mass transport in this microvasculature. That
area is more than twice the size of a doubles tennis court!

Similarly, the branching network of human lungs termi-
nates in 300-million tiny air sacs called alveoli (from the
Latin, alveolus, for, “a small hollow”) that have a total air-
sac-to-microvasculature contact area totaling 40-to-50-times
the surface area of the adult-body’s skin, which averages
1.75 m2 (range, 1.5–2.0 m2). Indeed, the interior of the lungs
is the most extensive body surface area in contact with the
environment.

Without belaboring the point, we can extrapolate these
considerations to more general engineering principles of
biological scaling by noting that, depending on one’s level
of observation, additional criteria might have to be met to
satisfy differing functional objectives on different scales-of-
perception. Therefore, in self-similar systems—where basic
relative proportions are preserved across all magnification
levels—the individual scaling principles from level-to-level
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are nevertheless weighted to allow for a certain degree
of variability, depending on which of several constraints
take(s) precedence at any given scale-of-observation. In
other words, although the general topography “looks the
same” across all levels of magnification, when viewed
“macroscopically,” at one level, it might appear to be scaled
to half the original dimensions of the pattern, whereas,
when examined at another, more “microscopic” level,
the pattern might reveal scaling to only one-third of its
macroscopic dimensions; and even “tighter” focusing might
show scaling to only one-tenth of the original pattern, while
still maintaining the same relative proportions that prevail
across all levels of perception. Therefore, moving from
level to level, we observe that there is not a constant overall
scaling factor that prevails across each step—which would,
indeed, be the case for “traditional,” classical similitude—
but, rather, the fractal imperfection in real-life systems,
together with additional constraining criteria, leads us to
encounter a scaling factor that is variably weighted relative
to the original pattern, even though, within each level and
across all of them, the same proportions prevail.

So it is that while we observe the vascular tree to appear
to incorporate a type of “classical” similitude—scaled
according to the Golden-Ratio/Fibonacci model—this is not
the whole story, because the vascular system also exhibits
a certain scaling variability across branching generations.
Then a more complete mathematical description (i.e. one
that takes into account such variability) must go beyond
simple similitude to the concept of renormalization, which
introduces the additional feature of fractal dimensions.

7 Fractal dimensions in space and time

Suppose we have a collection of objects—a “mathematical
set”—consisting of, say, the number of blood vessels, n, in
any branching generation, m, of the arterial system, where
n = f(m). Such a set might also be composed of groups of
notes in a piece of music, each group containing a number
of specific notes—say, all C’s, or all G#’s, and so on. Sup-
pose further, that this mathematical set has dimensions (e.g.
average vessel internal-diameter, Dm, length, Lm, and wall-
thickness, δm, or note time values . . . whole notes, half-
notes, quarter notes, etc.) that get smaller and smaller with
each succeeding generation, that is, the set “thins out” with
increasing m. Such a set is called a Cantor Set, because
its scaling properties across generations were first studied
by the German mathematician Georg Cantor (1845–1918).
Given any specific property, α, of the set, suppose further
that α is related to another property, λ, by a power-law rela-
tionship of the type α = λk. The value of “k” is the “dimen-
sion” of the domain within which the power-law expression
holds. For example, in classical Euclidean space, λ is some
characteristic length, L, and k can assume integer values—
which is to say k = 1 establishes α as a one-dimensional

line of length L, k = 2 establishes α as a two-dimensional
plane having area A, proportional in some sense to L2 and
k = 3 establishes α as a three-dimensional volume propor-
tional in some sense to L3.

Now think about a line (k = 1) that twists in such a
complicated way that it starts to fill up a plane. As the twist-
ing progresses, the line starts to “exist” in some fractional
dimension, k, that exceeds unity (a simple straight line), and
takes on values that get closer and closer to two (a simple
plane), as the twisting configurations get progressively more
complex. Classic examples of the latter are the fractal known
as a Sierpinski Triangle, which has a k-value of 1.585, and is
perfectly homogenous at all scales, showing no randomness,
and the Sierpinski Carpet, which has a k-value equal to 1.89
(Gleick [5], Schroeder [14]). Similarly, think about a plane
that contorts more and more into the third dimension—like
taking a plane piece of paper and “crumpling it up” into a
ball. Along the way, the plane progressively passes through
fractional dimensions that exceed two (the original plane of
the paper), and move gradually closer and closer to three
(a simple volume) as the “crumpling” gets more and more
complex and tighter (Gleick [5], Schroeder [14]). More gen-
erally, the “thinning dimension” of the “standard” Cantor
Set works out to be �n(2) ÷ �n(3) ≈ 0.63093—between a
point and a line (compare this value to Golden Ratio consid-
erations discussed earlier)—which brings to light the obser-
vation made in the early 1900s by another German mathe-
matician, the previously-mentioned Felix Hausdorff (1868–
1942).

Hausdorff determined that one could classify Cantor
Sets by means of the mathematical concept of fractional
dimensionality. That is to say, on the one hand, in “classical”
similitude a general homogeneity prevails across all levels-
of-perception, meaning that—as is the case for example,
for an Archimedean spiral—a single, constant scaling
factor suffices to quantify how the self-similar nature of the
system is accounted for as we move from one observation
level to another. On the other hand, if we are dealing with
systems (like biological and musical ones) that have the
features of self-similarity at each level of perception, but are
heterogenous across levels-of-perception, we must resort
to Hausdorff’s “Fractal Similitude” concept in order to
describe such systems.

Indeed, embedded in the concepts of fractal (as opposed
to classical) similitude and weighted renormalization is
one’s ability to account for a multiplicity of scales across
levels-of-perception, such as is the case, for example, in
the human bronchial tree. By “self-similarity,” then, we
mean that the functional form, α = λk, is frame-and-scale-
of-perception-indifferent—that is, one “sees” the same
thing, relatively speaking, at any scale of perception.
However, the specific details at any particular magnification
level—implicit in “m”—are weighted—implicit in the
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fractional dimensionality of k—compared to a corre-
sponding “standard.” Again, note from the equations
above, that the fractional dimension can be calculated as
(log α) ÷ (log λ).

For the vascular system in “branching space,” k is
evaluated by plotting y = log[Dm/D0] versus x = log[n]
(both functions of m), and then using a regression technique
to calculate the mean slope of the resulting graph. The
Hausdorff dimension we thus calculated was found to have
a value between −0.37 and −0.40. The negative signs are
consistent with the vascular system’s “thinning-out with
increasing m, in the branching space,” that is, this is an
inverse power-law relationship.

We see then that, morphometrically, natural fractal sys-
tems are not “smooth and homogenous” across all scales of
perception. Rather, they represent what might be called a
constrained randomness that is found everywhere in nature
(yes, even in music, too)—a type of self-similarity that, on
the one hand, is not purely random, yet, on the other hand,
lacks a specific, classical, constant scaling factor that pre-
vails across all levels of dimensional perception. The sig-
nificance of the Principle of Fractal/Fibonacci Scaling in
such self-similar systems is that it provides a reasonable
balance between deterministic, complex anatomic order and
seemingly random, statistical chaos. (Note that the opera-
tive word here is “complex”, like the line twisting or the
plane contorting as described earlier.) This Principle also
allows one to quantify (and explain?) the body’s remarkable
ability to do more with less—to economize on the use of
limited space while optimizing physiologic transport and
other processes—which is to say, elaborate:

• k-dimensional branching networks—such as the bron-
chial airways and vascular channels;

• convoluted enfoldings—such as the brain’s cerebrum
and lobes of the liver;

• jagged, irregular surfaces—such as the Hilbert-curve-
like circular folds, villi, and microvilli of the small intes-
tine, which give it a surface transport area on the order
of 200 m2 and

• microscopic functional sub-units—such as kidney neph-
rons;

they all allow for limited volumes to be “carved-out” or
otherwise “mapped” into regions having enormous transport
areas. So, again, let us see how what we have learned pri-
marily from spatial considerations can be applied with equal
validity to temporal ones; and to illustrate this extrapolation,
we will examine, of all things, noise!

8 Noise, frequency, and musical considerations

We know it when we hear it: the undesired, disturbing,
intrinsically unpleasant sound that is often harsh and
loud—to the point of interfering with and/or masking

other sounds being listened to—because one’s brain has
difficulty “picking out” the desired acoustic signal from
the background noise. In fact, the very word, noise,
that describes such an objectionable, subjective acoustic
experience, derives from the Latin, nausea, which generally
refers to “unpleasant conditions of various kinds.” Most
notably, the unpleasant conditions referred to involve the
stomach’s ‘queasiness’—associated with seasickness (-sea),
and the vessel (nau-) that caused it, from the Greek, naûs,
meaning, “ship.” Generalizing the meaning of nausea, then,
we have in noise the “unpleasant condition” experienced
by the hearing apparatus forced to listen to a disagreeable
acoustic signal. But what makes this signal displeasing to
the ear?

Answer: noise consists of random, unpredictable groups
of sound waves that impact the outer ear drum (tympanic
membrane) with no single, fundamental frequency (“pitch”)
or “pitch components.” Rather, the sound contains irregular
vibrations, which include a very wide spectrum (broadband)
of many, aperiodic, nonharmonic frequency components of
comparable (if not equal) amplitudes, randomly distributed
throughout the signal. When this random signal impacts the
acoustic architecture of the body, the brain has difficulty
“making heads-or-tails of it,” and it does not like that one
bit! Hence, we experience an “unpleasant sensation,” a feel-
ing of discomfort. (More generally, “noise” refers to any
disturbing sound, regular or otherwise, but that reference
is a highly-subjective, individual-specific perception that is
virtually impossible to quantify objectively, especially as it
relates to pain, fatigue, discomfort, and the compromising of
mental and motor efficiency that results therefrom.)

Taking a leaf out of the “Book of Light,” for vision,
white noise, in the acoustic literature, is defined to be a
signal containing (hypothetically) all sonic frequencies, f ,
between 20 and 20,000 cycles per second. Thus, pure white
noise produces a flat frequency spectrum—which is a graph
of wave-amplitude versus wave-frequency—in linear space.
Each differential frequency component, δf , is assumed to
have equal power, and any finite sub-band, Δf , of the broad
bandwidth is considered to contain the same amount of
total acoustic energy. For example, in the range between
20 Hz and 50 Hz (Δf = 30 Hz), the signal would have the
same amount of total energy as it does in the 30-Hz range
between 9,220 and 9,250.

Of course, simultaneously sounding 20,000 different
tones of equal energy is a purely “hypothetical” construct,
because to randomly generate so many pitches with
intensity distributed uniformly over all frequencies would
require an enormous amount of energy (indeed, in the
extrapolated limit of total, pure “white noise,” composed
of all frequencies, sonic, electromagnetic, and otherwise,
as the frequency goes to infinity, so does power). Thus, in
practice, a “noisy” signal is considered to be “white” if it
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has a uniform-or-nearly-uniform energy spectral density
function, P (f) [energy, or power, P (f), per Hertz], plotted
versus f , over any well-defined frequency band. Using light
as an example, white light, then, is the mixture of all seven
visible frequency bands in the ranges:

• 400–484 Tera(1012) Hertz (THz) = red,

• 484–508 THz = orange,

• 508–526 THz = yellow,

• 526–606 THz = green,

• 606–668 THz = blue and

• 668–789 THz = violet,

with each bandwidth having approximately equal represen-
tation, that is, equal energy per cycle in the frequency spec-
trum of the “noisy” signal.

Now suppose we have a situation where equal power
exists not in frequency bands of constant increments, Δf ,
but in bands that are proportionally wide, having a constant
proportionality factor, β. For example, the power might
be the same in frequency bands separated by a β-factor of
two—expressed as “equal power per octave, 8ve,” rather
than “equal power per cycle” (recall our discussion of self-
similarity). Then, instead of having the same energy in each
band of width Δf = 30 Hz = constant, as was the case
earlier, we now have the same amount of energy in the band
from 20 Hz to 40 Hz (bandwidth doubling, increasing by
Δf = 20-Hz), as exists in the band from 9,220-to-18,440
(bandwidth again doubling, but this time, Δf = 9, 220-Hz,
and k = 2) . . . and so on.

In the above case, each bandwidth of equal energy
involves a constant factor (an octave, twice the frequency),
rather than a constant increment, such as Δf = 30-Hz.
This means that—compared to white noise, where each
frequency component is assumed to have equal power,
yielding a flat energy spectrum—we now have a situation
where each frequency component actually loses energy
as we move up the frequency spectrum in octaves. That
is to say, at the low end (20–40 Hz) the same amount of
energy is shared by only 20 frequency components, whereas
at the high end (9,220–18,440 Hz), that same amount of
energy is shared by 9,220 frequency components, so each
frequency component at the high end has correspondingly
less energy than does one at the low end. For many noisy
signals, such intensity variations with increasing frequency,
often expressed as “decibels, dB, per octave,” can be
modeled by a Power-law relationship, wherein P (f), per
infinitesimal bandwidth, δf , is expressed in terms of center
frequency, f , by an inverse-power-law equation of the type
P (f) = [1/f ]k (again, suggestive of self-similarity in the
frequency, as opposed to the spatial domain).

If we take the logarithm of both sides of this equation
we get

log
[
P (f)

]
= k log(1) − k log(f); and since log(1) = 0,

this equation reduces to

log
[
P (f)

]
= −k log(f).

The log-log plot of the latter is a straight line of negative
slope k. Note that k = 0 corresponds to the hypothetical
case of pure white noise, where P (f) = 1 (i.e. a flat energy
spectrum for all frequencies). If k = 1, and [P (f)] is
expressed as the non-dimensional ratio of actual sound
intensity, I , to some reference value, I∗ (perhaps the
threshold of human hearing, around 10−16 Watts/cm2), then
Log[P (f)] becomes log(I/I∗), which defines the Bel, B.
Then, from above, between any two points, 1 and 2 on the
log-log plot:

B2 − B1 = −[
log f2 − log f1

]
= − log

(
f2/f1

)
.

Continuing with our octave-example, let f double, that
is, let f2 = 2f1. Then log(f2/f1) = log(2f1/f1) = log 2 =
0.30. B2 −B1, then, equals −0.30, so the power of this sig-
nal drops off at 0.3 Bels, or three decibels, per octave, equiv-
alent to [P (f2)]/[P (f1)] = 10−0.3 = 0.5; so [P (f2)] =
0.5[P (f1)], a 50% drop in energy per cycle for every octave
traveled up the frequency spectrum. Again, by a loose anal-
ogy to light, “1/f noise,” as the case for β = 1 is called,
is assigned the color pink, and known as pink noise. Pink
[“1/f”] noise in music and speech has been studied exten-
sively, from the pioneering work of Voss and Clark [15] in
the early-to-mid 1970’s, to the more recent analyses of Ro
and Kwon [8]. Details are beyond the scope of this paper, so
the reader is referred to the literature for more information,
as we move on to note that, indeed, depending on the value
of k, one might have:

• “white” noise: k = 0;
• “pink” noise: k = 1;
• “red” or Brownian ≡ ”Brown” noise: k = 2, such that

B falls off at 6 dB/8ve [note: “pink” noise is so-called
because k = 1 lies between “white,” k = 0, and “red,”
k = 2 noise];

• “blue” or azure noise: k = −1, such that B increases at
3 dB/8ve;

• “violet” or purple noise: k = −2, such that B increases
at 6 dB/8ve.

There are also several “unofficial” colors, such as

• “grey” (random pink noise weighted over a given range
of f );

• “orange” (quasi-stationary noise containing “pockets”
of zero energy dispersed throughout a continuous
spectrum);

• “green” (the “background noise” of the world, hence its
name);
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• “yellow”; (“sunlight” noise);

• “black” (k > 2).

It is worth emphasizing again that power-law rela-
tionships are typical of self-similar systems. It therefore
follows that noise, in the time domain—and, by inference,
music, as well—has many of the same properties of self-
similarity as does geometric configuration, in the space
domain. This means that as we move up the frequency
spectrum from bandwidth to bandwidth, we encounter
proportionally-scaled time-dependent behavior, related to
energy considerations per bandwidth. For example, self-
similarity in frequency (logarithmic) space helps to explain
the auditory phenomenon of pitch equivalence. That is
to say, as one travels up the frequency ladder, since the
“1/f” power is equal among all octave bandwidths, all
pitches separated by one or more perfect “octaves” (i.e.
all acoustic frequencies that are related by powers of two)
are perceived to be equivalent, regardless of the actual
frequencies involved. That is why the upper note of an
octave “sounds the same” as its lower note, regardless of the
register in which the octave is sounded.

9 Concluding remarks

In this paper, some “food-for-thought” was presented that
might help to elaborate the profound effects that music
has on physiologic function. The two share “obvious” and,
perhaps, “not-so-obvious” connections in the time domain
. . . from an overlap in critical operating frequencies to
self-similar function at various scales-of-perception. Self-
similarity in physiologic function is best illustrated in the
space domain, using the human vascular and respiratory
systems as examples . . . and it is shown herein that spatial
considerations can be easily extrapolated into the time
domain. Indeed, the two share many of the same properties
when viewed at different scales of perception.

Self-similarity in music is best illustrated in the time
domain by examining the frequency spectra of noise, and
easily extrapolated in the limit to the “organized sound”
that forms the basis for the elements of music. Thus, self-
similarity, as a property of nature, provides a “common
ground” upon which both music and the human body stand
and so, may very well be one of the “keys” to unlocking
the mystery of the music effect. That is to say, within
the context of the concepts of self-similarity and power-law
formulations, we might find a common architecture between
anatomic/physiologic function and musical structure—an
architecture that might help to explain the symbiotic
relationship between the two. In turn, such an explanation
can be expected to shed some light on the physics of what
is going on here, a type of physics that can be exploited
in clinical applications. Certainly, it is worthy of further
exploration.
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