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Abstract

Ganglionated Plexus (GP) is a complex neural network composed by intrinsic cardiac autonomic nervous system 
(ANS) and is mainly located in fat pads around the antrum of the pulmonary veins (PVs). Recent studies demonstrated 
hyperactivity of GPs and atrial fibrillation (AF) formed a vicious cycle, to be specific, hyperactivity of the cardiac GPs 
facilitated the initiation and maintenance of AF and the activity of cardiac GPs increased as AF continued. In addition, 
research has confirmed that the Nav1.8 channel is highly expressed in GPs and is closely related to activity of GPs and 
the inducibility of AF. Nerve growth factor (NGF) is an important neurotrophic factor and the expression of NGF in GPs 
is up-regulated during AF over time, which could trigger the release of SP in the heart via TRPV1 signaling pathways. 
Besides, SP could rapidly increase the activity of the Nav1.8 channel, demonstrating the increment of Sensory nerve 
action potentials. Therefore, we hypothesized that up-regulated NGF during AF could increase the activity of GPs 
through TRPV1-SP-Nav1.8 channel pathways and contributes to stability of AF. If this hypothesis is proved to be correct, 
future studies based on this link may help to find new therapeutic targets for the treatment of AF.
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Short Communication 
Atrial fibrillation (AF) is the most common cardiac arrhythmia, 

and the prevalence of AF is expected to increase dramatically over 
the next few decades [1]. Although AF itself is not typically lethal, 
it is associated with an increased risk of stroke, heart failure, and 
dementia, as well as cardiovascular-related and all-cause mortality [2]. 
In addition, AF accounts for more than one-third of all arrhythmia-
related hospitalizations [3]. Once AF is initiated, it is inclined to sustain 
itself and cause changes in progressive electrical remodeling [4] and 
structural remodeling [5] of the atria and that promote the occurrence 
and maintenance of AF, knowing as the concept of “AF begets AF”. 
Recent years, emerging evidence indicated that autonomic remodeling 
has a close link with the initiation and maintenance of AF [6].

The Relationship between Atrial Neural Hyperactivity 
and AF Inducibility

Cardiac autonomic nerve is made up of two main components: the 
extrinsic and intrinsic autonomic nervous system (ANS). The former 
consists mainly of ganglia and their axons located outside the heart 
and the latter is composed mainly of ganglionated plexi and their 
axons, which are typically embedded in the epicardial fat pads [7]. As 
to human hearts, there are at least 7 GP and 4 major left atrial GP are 
located around the antrum of the PVs [8]. In addition, most of intrinsic 
cardiac neurons in GPs were found to be cholinergic. 

Recently, Several lines of evidence suggested that autonomic 
remodeling plays an important role in the pathogenesis of AF, which 
mainly demonstrated as the hyperactivity of the cardiac autonomic 
nervous system (ANS) [6,9,10] and sympathetic hyperinnervation [11] 
and changes of several protein such as nerve growth factor (NGF), 
small conductance calcium-activated potassium channel type 2 (SK2), 
neurturin (NRTN) [12,13], to be specific, researchers found that both 
of extrinsic cardiac nerve activity (ECNA) and intrinsic cardiac nerve 
activity (ICNA) increased as AF continued. Moreover, in a canine 
model, researchers found that Stimulation of either the Aortic Root GP 
or anterior right ganglionated plexuses (GP) could trigger the initiation 
of AF [14,15]. On the contrary, several studies found that 1) destruction 

of epicardial fat pads by radiofrequency ablation or surgical excision 
[16,17], 2) blockade of autonomic nerve within GPs could induced a 
progressive increase in the AF threshold and prevented the initiation 
and maintenance of AF [18]. Taken together, these facts confirmed that 
hyperactivity of the cardiac ANS and AF formed a vicious cycle and 
suppressed the activity of GPs could effective inhibit the inducibility 
of AF.

The Expression of NGF within Gps Up-Regulated as AF 
Continued

NGF is one of the most extensively studied neurotrophic factors, 
which can be synthesized by several types of cells, including lymphocytes, 
fibroblasts, macrophages and mast cells [19], and it is vital for the 
survival, differentiation, and synaptic activity of the sympathetic and 
sensory nervous systems [20,21]. There is considerable evidence that 
the expression of NGF became increasingly up-regulated throughout 
the progress of AF [12,13], high-frequency electrical field stimulation 
(HFES) of both parasympathetic [22] and sympatheticneurons in vitro 
to mimic rapid atrial depolarization further indicated that the cardiac 
autonomic neurons are an important source of NGF. Besides, abundant 
studies have shown that NGF plays an essential role in hyperalgesia 
and inflammatory pain [23], which are mainly associated with Nav1.8 
channels [24] and TRPV1 receptors [25]. To be specific, acute exposure 
of NGF can enhance the activity of TRPV1 receptor within half an 
hour through phosphoinositide-3-kinase and mitogen activated 
protein kinase signaling pathways [26] and subsequently trigger the 
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release of SP, which could rapidly potentiates Nav1.8 sodium current 
via PKCε-dependent signaling pathway [27]. On the other hand, 
chronic exposure of NGF has been shown to lead to an increase in the 
expression level of the Nav1.8 channel via transcriptional modification 
mechanisms [23,28].

Nav1.8 Channel, TRPV1 Receptor and SP are Co-Expressed 
in Cardiac Vagal Neurons within Gps

Nav1.8 (encoded by SCN10A) is a TTX-R Na+ channel [24], which 
is localized predominantly in small/medium nociceptive C/Aδ-type 
dorsal root ganglia (DRG) neurons [25], and plays a critical role in the 
upstroke of action potential in neurons. Recent studies showed that 
the Nav1.8 channel rather than other types of Voltage-gated sodium 
channels (VGSCs) is highly expressed within GPs [29,30]. Besides, 
blockade of the Nav1.8 channel by its special chemical antagonists 
A803467 could significantly inhibit the activity of GPs [31,32] and 
counteract the cholinergic effects of GPs stimulation, indicating that 
the Nav1.8 channel is highly expressed in cardiac vagal neurons and is 
closely related to the activity of GPs.

The capsaicin receptor TRPV1 (transient receptor 
potentialvanilloid-1, previously known as vanilloid receptor subtype 
1) is a nonselective cation channel, which can be activated by physical 
and chemical mediators including noxious heat, protons, vanilloid 
compounds [33]. In recent studies, it has been confirmed that TRPV1 
receptors are expressed in cardiac afferent neurons in the nodose 
ganglia (NG). Besides, Immunocytochemistry further revealed that 
Substance P (SP), as a member of tachykinin family, also expressed 
in the cardiac vagal afferent neurons in the NG [34], it was reported 
that during ischemia/reperfusion injury, TRPV1 receptors played an 
important role in mediating cardiac ischemic preconditioning via 
increasing endogenous SP and led to improved cardiac performance 
in the diabetic heart [35,36]. In addition, it has reported that SP could 
activate NK-1 receptor and potentiate Nav1.8 sodium current via 
PKCε-dependent signaling pathway [27]. 

Hypothesis
Considering the background above, we hypothesized that NGF 

was a crucial factor contributing to the vicious cycle between GPs 
hyperactivity and AF. This hypothesis is supported by three main lines of 
evidence. First, in a model of AF, direct neural recordings of the activity 
of GPs increased as AF progressed [12,37], which in turn maintained 
short and dispersed atrial effective refractory periods to sustain AF. On 
the contrary, inhibition of the activity of GPs by physical or chemical 
methods can potently suppress the initiation and maintenance of AF. 
Second, there is considerable evidence that the expression of NGF 
became increasingly up-regulated throughout the progress of AF and 
cells experiment further confirmed that cardiac autonomic nerve is an 
important resource of NGF. Third, Immunocytochemistry revealed 
that TRPV1 channel, SP and the Nav1.8 channel definitely expressed 
in the cardiac vagal afferent neurons, and NGF can not only rapidly 
enhance the activity of Nav1.8 channel through stimulation of TRPV1 
receptor but also increase the expression of Nav1.8 channel.

In summary, the expression of NGF up-regulated as AF continued 
and induced the hyperactivity of GPs through TRPV1-SP-Nav1.8 
channel pathways. The resulting hyperactivity of GPs and AF form a 
vicious cycle and reciprocally enhance each other. 

Evaluation and Discussion of the Hypothesis
To test our hypothesis, several mongrel dogs will be enrolled and 

Experiments will follow the guidelines outlined by the Care and Use 

of Laboratory Animals of the National Institutes of Health. First, heart 
needs to be exprosured by means of thoracotomy and neurons within 
GPs need to be isolated, the expression of TPRV1 receptor, SP and Nav1.8 
channel should be tested by western blot and Quantitative RT-PCR to 
verify they are indeed co-expressed within GPs. Second, the activity of 
GPs needs to be recorded by BL-420E multi-lead physiological recorder 
in baseline and in the present of NGF with or not K252a (a high-affinity 
nerve growth factor receptor blocker) [38] respectively. The location of 
GPs can be confirmed by high frequency stimulation (HFS; 20 Hz, 10–
150 V, 1–10 ms pulse width) where GPs are presumed to be located. As 
most of intrinsic cardiac neurons in GPs were found to be cholinergic, 
HFS will induce a significant parasympathetic response, when mean 
R-R interval demonstrate as ≥ 50% increase, this location is assigned 
as a GP site [39]. Furthermore, atrial effective refractory period, and 
the cumulative window of vulnerability should be tested to verify the 
relationship between the activity of GPs and the inducibility of AF.

The second step is to confirm the mechanism that why NGF can 
induce the hyperactivity of GPs, in order to answer this question, we 
will apply an antagonist or agonist to inhibit or mimic the biological 
effect of NGF, TRPV1 receptor, SP respectively to examine their 
influence on the activity of GPs and the inducibility of AF, the methods 
above can refer to these articles [27,31,32,40].

We predict that the Nav1.8 channel, TRPV1, SP are indeed 
expressed within GPs, and up-regulated NGF within GPs promotes 
activity of GPs through TRPV1 receptor-SP-Nav1.8 channel pathways 
and leads to the vicious cycle between GPs hyperactivity and AF.

Underlying Clinical Perspective
Atrial fibrillation (AF) is a complex arrhythmia, although intensive 

research has been done to try to uncover the riddle, the underlying 
molecular basis remains only partially understood, we hope that this 
proposed research will contribute to the greater general knowledge on 
the mechanism of AF development and break the vicious cycle of “AF 
Begets AF” by early autonomic intervention. Besides, if this hypothesis 
proven to be true, it would be beneficial to explain the link between 
obesity and AF [41], especially in patients with a higher volume of 
epicardial adipose tissue [42-44]. As research has revealed that obesity 
with an expansion of adipose tissue mass can result in the excessive 
secretion of tumor necrosis factor-alpha, which could induce the 
expression of NGF [45]. Therefore, this hypothesis is significative, it 
may help to elucidate the vicious cycle between autonomic remodeling 
and AF and to find new therapeutic targets for the treatment of AF.
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