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Abstract
It is unclear which hyper parameter search technique will be most successful because the global structure of 

the hyper parameter spaces of neural networks is not well understood. In order to offer guidance on suitable search 
methods for these spaces, we study the topographies of convolutional neural network architectural search spaces 
in this research. We investigate the overall structure of these spaces using a traditional method (fitness distance 
correlation) and a more contemporary instrument (local optima networks). 
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Introduction
Deeper and more intricate neural network designs are being used as 

a result of recent deep learning accomplishments in handling difficult 
issues. Millions of weights to be taught are now typical for manually 
created networks made up of combinations of several layer kinds. 
Finding a model that excels at a specific activity involves significant 
knowledge and resources, making the construction of these networks 
no simple undertaking [1]. 

Methods
Localized opti networks

Presented local optima networks (LONs) as a graph-based 
abstraction of the search space representing the global structure. Each 
LON node is a local optimum, and the edges between nodes show the 
proximity of the optimum basins (the possibility of search transitioning 
from one local optimum to another). The reader is directed to the LON 
website, http://lonmaps.com, for resources, as LONs have been widely 
used as a landscape study tool (especially for discrete search spaces) 
[2, 3]. 

Fault landscapes 

In the context of neural networks, training is an optimization 
problem with the goal of minimising the error on the machine 
learning task. The search space is the set of all network weights. An 
error landscape (also known as a loss landscape) is the surface that the 
training algorithm travels through in weight space and is comparable 
to a fitness landscape [4].

Since the error to be minimised depends on the data set used to 
evaluate the error, the examination of neural network error surfaces 
is made more challenging by the possibility that the same solution can 
have distinct error values. Theoretically and empirically analysing the 
error surfaces of multi-layered neural networks, Choromanska et al [5]. 

The training and testing error grew significantly de-correlated with 
network size, according to [9]'s theoretical and empirical analysis of 
the error surfaces of multi-layered neural networks. Finding the global 
optimum in the training loss landscape may not be very useful as a 
result of the fact that it is unlikely to be in the same location as the 
global optimum in the testing loss landscape. We will demonstrate how 
our study discovered evidence of this behaviour in the instance of the 
search space of CNN architectures [6, 7]. 

Landscapes are analyzed by neural architecture 

While neural architecture search (NAS) focuses on the optimization 
of model-related parameters, such as the number and types of layers, 
the number of neurons in each layer, the choice of activation functions, 
etc., hyperparameter optimization in neural network training focuses 
on the search for optimal training-related parameters, such as the 
batch size and learning rate. Random search, reinforcement learning, 
gradient-based search techniques, evolutionary search techniques, and 
Bayesian optimization are some of the broad NAS approaches [8, 9]. 

Discussion
The paper's insight into the characteristics of CNNs' architectural 

search landscapes is one of its primary contributions. Fitness distance 
correlation and local optima networks were used to characterise the 
global CNN architecture spaces of six classification problems utilising 
a smaller search space. The analysis revealed that there are only a small 
number of local optima and that the globally optimal solutions can be 
easily attained by applying a straightforward perturbation operator, 
indicating that a hill-climbing approach like ILS might be a useful 
method for navigating these search landscapes. 

Conclusion 
The second part of our study tested this theory by experimentally 

contrasting the performance of ILS with three EA variations while using 
a more expressive grammar to provide a significantly wider search area. 
The findings confirm findings from earlier studies by demonstrating 
that ILS was a more successful method than all other EA variations 
for scanning the training landscapes. For half of the datasets taken 
into consideration, ILS was also the best generalisation approach. The 
examination of the smaller search space revealed a better association 
between the training and test loss levels for these datasets [10]. 
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