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 Abstract
Cognitive decline in dementia does not correspond precisely to the amount of neurodegeneration in the brain. 

This discrepancy in brain damage and its clinical manifestation has been explicated by the concept of reserve. Brain 
reserve inferred from the brain size had moderate success in explaining the discrepancy, and numerous studies 
have reported the effects of education supporting cognitive reserve. Yet the neural substrates of reserve have been 
elusive. Utilizing optimized voxel-based morphometry, we have identified brain regions that were significantly smaller 
in individuals with low cognitive performance (LCP) compared to those with normal cognitive performance (NCP) 
in community-residing non-demented elderly people both with low educational attainment. It was assumed that the 
cognitive performance in this population reflected long-standing cognitive functioning of the individual, possibly the 
reserve, based on their stable follow-up performance and clinical interviews. Bilateral precuneus, right superior 
frontal gyrus and left middle frontal gyrus were smaller in individuals with LCP. Further, the LCP individuals had 
weaker correlation between the gray matter volume of those regions and the rest of the cortex. On the other hand, 
volume of these regions was more tightly correlated with the K-DRS Total score in these individuals. Finally, an 
outcome study of the community sample from which this study's participants were recruited from reported five times 
higher risk of dementia in the LCP group. Precuneus and prefrontal cortex are proposed as key sites comprising the 
neural substrates that underlie the reserve.
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Individuals with superior intelligence develop dementia symptoms 
later in the course of illness, and low education has been repeatedly 
observed as a risk for Alzheimer’s disease and dementia in general 
[1-3]. It has been proposed that individuals with greater cognitive 
reserve, measured with proxies such as education, occupation, and the 
Intelligence Quotient (IQ), can withstand the effects of brain injury or 
neurodegenerative processes, and delay the clinical manifestation of 
dementia, while individuals with smaller reserve would manifest the 
symptoms earlier in the disease process [2,4,5]. 

Reserve refers to the individual’s ability to tolerate the effect of brain 
disease, and delay or even prevent the development of clinical symptoms 
of neuropathology [2,5]. Initially, reserve was conceptualized in simple 
brain measures of integrity, such as the whole brain volume and synaptic 
density [1,6], characterized as brain reserve [2]. conceptualized it 
cognitively as an active cognitive processes that enables the individual 
to cope with after brain damage or neuro degeneration. Consistent 
with the reserve theory, education, the most popular proxy, has been 
repeatedly identified as a moderator in the development of dementia 
in longitudinal outcome studies. While low educational attainment has 
been found to be a significant risk factor for dementia [7-9], greater 
years of education has been shown to delay the clinical manifestation 
of dementia in proportion to the number of years [4,10]. These findings 
were confirmed and replicated in post-mortem neuropathology [11-13] 
as well as neuroimaging studies [14-17]. Occupation, intelligence, and 
more recently leisure activities, other proxies of cognitive reserve, have 
also shown protective effects against dementia [5]. 

Recently, attempts to investigate the neural mechanism underlying 
cognitive reserve have been reported. A study found a common neural 
network involving the superior and medial frontal gyri that was 
activated as the processing load increased in a delayed item-recognition 

task. Based on the assumption that cognitive reserve would share brain 
network activated during demanding processing load, the results 
suggest that this network may be consistent with a neural representation 
of the cognitive reserve [18]. 

Brain maintenance during aging is another factor that could account 
for individual differences in dementia risk [19], and studies have shown 
that elderly individuals with minimal cognitive aging tended to have less 
senescent or pathological changes in their brain. Prefrontal cortex (PFC), 
the brain region showing earliest signs of aging, has been studied extensively 
to examine brain maintenance. For instance, PFC has been found to be 
thicker in elderly people who performed better in the Wisconsin Card 
Sorting Test, a classical test for higher cognitive functioning [20]. Further, 
successful brain maintenance in this region was manifested in high-
performing elderly people who recruited cortical networks similar to 
young subjects during a working memory task [21,22]. 

Compared to the neural correlates of cognitive reserve or the brain 
maintenance factors, the features of brain reserve have been elaborated 
in scant detail. The earlier theories of brain reserve [1,6] focusing on 
whole brain volume or the synaptic density were effective in explaining 
the reserve effect by utilizing a quantitative threshold [23], and studies 
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have demonstrated that gross brain volumes and IQ, a key proxy of 
the reserve, were correlated in young [24] as well as old adults [25]. 
The brain size, however, is limited in accounting for the individual 
difference in cognitive processing that could make a significant 
difference within similar brain-sized people [2]. And it has been shown 
that fMRI activation patterns during a visual encoding task correlated 
better with the proxies such as IQ, education, occupation, and leisure-
activities [26] than the whole brain volume. Further, brain reserve has 
been considered a passive model due to its assumption of a threshold at 
which clinical symptoms manifest without consideration of individual 
differences in how brain processes cognitive tasks [2]. While this may 
have been a valid point, recent studies have found evidence that brain 
structures as well as functions change over the adult lifespan due to 
developmental [27,28], environmental [29,30], and medical factors 
[31]. Further, whole brain volume is a single index that does not reflect 
individual differences in regional structures. Since recent structural 
imaging techniques provides voxel counts, volume, or thickness of the 
regions, the brain reserve concept can be approached anew using these 
regional measures, and shed light into the neural substrates of cognitive 
differences in elderly people. Studies have investigated the relation 
between intelligence and regional brain measures mostly in younger 
adults, and found cortical regions, mostly the prefrontal cortex and 
the parietal lobe [32] to be associated with IQ. Yet, few studies have 
explored the regional brain volumes that are associated with cognitive 
ability or proxies of reserve in the context of aging. 

In this study, we attempted to find brain regions that were associated 
with overall cognitive functioning in non-demented community-
residing elderly people. We analyzed the regional gray matter volume 
of 13 individuals with low cognitive performance (LCP) and compared 
them to those with 13 normal cognitive performance (NCP) who were 
matched in age and education. They were all recruited from a sample 
of 243 non-demented community-residing elderly Koreans who were 
followed-up longitudinally for 6 years, and had been evaluated for 
dementia diagnosis [33]. Since the cognitive performance in this sample 
remained stable and did not decline during the following four years, it 
was assumed that cognitive performance in this population at baseline 
measures individual's long-standing cognitive functioning status. 

Materials and Methods
Participants

Twenty six individuals were recruited from a sample of 243 non-
demented community-residing elderly people in the Seoul National 
University Cognitive Aging Study (SNU-CAS) at baseline. Individuals 
in the SNU-CAS were non-demented and “normal” according to a 
criteria from a previous study [34]. They 1) were free of memory and 
cognitive disorders leading to corresponding functional impairments 
in everyday life; 2) lived independently without difficulty; 3) had no 
psychiatric and neurological illness; and 4) had no physical conditions 
that are known to compromise cognitive capacity such as hypertension 
or diabetes that could not be controlled by medication, thyroid disease, 
or loss of consciousness for more than 20 minutes. The participants 
did not have severe hearing or vision problems that could significantly 
compromise the neuropsychological test results. 

A battery of neuropsychological tests, clinical tests, and 
interviews were administered to assess the cognitive and behavioural 
functions that were necessary to ascertain the “normal” status of the 
elderly participants. Neuropsychological assessment involved 1) a 
neuropsychological interview with the subject, 2) the Korean version 
of the Dementia Rating Scale [35,36], 3) the Elderly Memory disorder 

Scale [37], 4) the Beck Depression Inventory [38], 5) the Edinburgh 
Handedness Inventory [39], 6) the Literacy Questionnaire [40], and 
a semi-structured interview [41] with an informant to confirm lack 
of significant change in cognitive and behavioural functions. Further 
details of the tools are in [42]. Therefore, no one with complaints of 
cognitive decline either from the subject him/herself or family members 
was included in the study.

Thirteen individuals had low cognitive performance (LCP) while 
thirteen had normal cognitive performance (NCP) according to the 
following criteria. LCP was defined by poor or borderline performance 
on either the Total score on the K-DRS or the Long-term Memory 
Recall score on the EMS; i.e., scores less than one standard deviation 
below the mean compared to the age- and education-specified norms. 
In order to be classified as having NCP, both the Total K-DRS and the 
Long-Term Memory Recall of the EMS had to be equal or above the 
cut-off score. 

The two groups were matched on age and years of education, but 
were significantly different in the rate of literacy (Table 1). The subjects 
also received baseline brain MRI for voxel-based morphometry. These 
individuals had no significant findings on their T1- and T2 weighted 
MRI images that could suggest brain disorders or lesions [42] for 
detailed description on the exclusionary criteria.

Procedures
At baseline, each participant received an oral briefing on the nature 

of the study and signed an agreement of participation, followed by a 
comprehensive neuropsychological evaluation and sampling of the venous 
blood sample for the determination of the ApoE genotype. Lastly, brain 
magnetic resonance imaging (MRI) scans from thirty-one participants 
were obtained. Since the institutional review board of Seoul National 
University was not present during the time of the seven-year study, 
researchers abided by the Declaration of Helsinki [43]. The procedural 
details of the baseline study is described in a previous study [42]. 

Acquisition and analysis of the magnetic resonance image 
data

Whole brain magnetic resonance images were acquired on a 1.5-T 
Signa system (General Electric Medical System, Milwaukee, WI, U.S.A). 
The MRI protocol included the following: (a) sagittal T1-weighted 
acquisitions (repetition time (TR) 400 msec, echo time (TE) 11, number 
of excitations (NEX) 1) with field of view (FOV) of 24 cm, 5-mm slice 

LCP (n=13)
Mean+SD or 
frequency

NCP (n=13)
Mean+SD or 
frequency

Statistical 
Significance

Age 71.38 (8.05) 71.15 (7.87) 0.942
Gender (male/female) 5/8 3/10 0.673
Education 3.00 (4.32) 2.77 (3.44) 0.882
Literacy (n) 7 0 0.005**

K-DRS Total 101.92 (12.09) 128.38 (9.22) 0.000**

EMS DM recall 1.18 (0.56) 1.88 (0.44) 0.002**

Apo e4 allele (n)a 2 0 0.199
Hypertensionb 1/11 2/13 NS
Diabetes 1/13 0/13 NS
LOC (<20 min)c 4/13 1/13 NS
Habitual smoking 1/13 3/13 NS

aData was not available for three subjects
bData was not available for two subjects
cDuration of loss of consciousness

Table1: Descriptive statistics of the LCP and the NCP participants.
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thickness, and matrix size of 256 x 256; (b) T2-weighted acquisitions 
(TR 3,000, TE 100, NEX 2) in the coronal planes perpendicular to the 
long axis of the hippocampus with section thickness of 3 mm, FOV 
of 21 cm, and matrix size of 256 × 256; (c) coronal T1-weighted (TR 
30 msec, TE 7, NEX 1, flip angle 45°) three-dimensional (3D) spoiled 
gradient acquisitions with 124 sections at 1.6-mm slice thickness, FOV 
of 21 cm, and matrix size of 256 × 192.

To investigate the group differences in regional gray matter volume, 
optimized voxel-based-morphometry (VBM) was utilized. We adapted 
the optimized VBM methods from a previous study [44]. To briefly 
summarize, data from all 26 participants were used to construct a study-
specific template image. Creating a template image tailored to our study 
was especially important given that typical template images are derived 
from a young adult sample (e.g., MNI152). Subsequently, the original 
whole brain images were segmented into gray and white matter images. 
Unconnected non-brain voxels (i.e., voxels not containing gray matter, 
white matter, or cerebrospinal fluid) were then extracted from these 
segmented images [45]. 

Gray matter images were then spatially normalized again, limiting any 
effects of non-brain voxels in the normalization process, thereby acquiring 
optimal spatial normalization of gray matter images. Then, optimized 
normalization parameters derived from the previous step were reapplied 
to the original whole brain images. They were spatially normalized and 
then segmented into gray matter, white matter, and cerebrospinal fluid. In 
addition, the Jacobian determinants, derived from spatial normalization, 
were applied to all gray matter images in order to acquire volume 
information from the voxels. Finally, all images were smoothed using a 
Gaussian kernel (full-width–half maximum= 8 mm).

Statistical Analyses
Independent t-test, chi-square test, and analysis of variance 

(ANOVA) were utilized to tests the group differences on basic 
demographic, cognitive, and health measures, and descriptive statistics 
were calculated. 

Voxel-based morphometry 

All smoothed images were assigned to either the LCP or the NCP 
group. Then, the contrasts (LCP < NCP, LCP > NCP) were obtained, 
using the analysis of covariance (ANCOVA) model, implemented in 
SPM2 with age, sex and intracranial volume (ICV) as covariates of no 
interest. ICV was measured with the reconstructed sagittal images of 
5-mm thickness SPGR MRI data, details of which are described in [42]. 
A significance level of p < 0.001 (uncorrected) and k = 100 voxels was 
used to report VBM results. 

Structural correlation analysis 

To examine how relevant brain regions correlate with one another 
in terms of gray matter density, we employed a seed-based structural 
correlation analysis by extracting gray matter volume values from the 
4 ROIs (“seeds”) identified by the LCP < NCP contrast performed in 
the aforementioned ANCOVA model. To enable a brain wide analysis 
of structural correlation we used the AAL-template [46] to convert the 
structural images of participants into 116 regions of interest (ROIs). 
To remove the influence of several confounding variables, a multiple 
regression model that included age, sex and ICV was run on all 
seed values and on all 116 ROIs across subjects. The residuals of this 
regression were then correlated in the subsequent analysis. This allowed 
us to visualize brain regions that correlated with the seed regions across 
the whole brain while controlling for the effects of age, sex and ICV, 

hence identifying a structural correlation network for each seed region. 
Additionally, in order to assess group differences in the structural 
correlation patterns, we computed each of the 4 structural correlation 
networks separately for the LCP and the NCP groups, and compared the 
networks with a permutation test (10,000 iterations). Given that there 
were 4 seeds and 2 groups, a total of 12 structural correlation networks 
(4 for each group plus 4 for all 26 participants) are reported here. 

Regional brain volumes and cognitive functions

To investigate the cognitive functions associated with the four 
seeds, we performed correlation analysis between the regions and the 
neuropsychological performance scores, controlling for age, sex, and 
ICV. To further investigate the association of regional brain volumes 
with overall cognitive functioning, we extended the analysis of the 
previous section: we used the K-DRS Total score as a “seed” and 
correlated it with the 116 regional ROIs, again controlling for age, sex, 
intracranial volume as covariates of no interest. Additionally, in order 
to assess the LCP versus NCP group differences in the correlation 
pattern between the K-DRS Total and the brain regions, we compared 
the correlation pattern with a permutation test (10,000 iterations). 

Results
Low cognitive performance and regional gray matter volumes

The LCP group showed significantly smaller gray matter volume 
in bilateral precuneus and areas in the prefrontal cortex (Figure 1 
and Table 2). The most notable difference between the two groups 
were found in bilateral precuneus, but regions in the right superior 
frontal gyrus (SFG) and the left middle frontal gyrus (MFG) were also 
significantly different. Medial temporal lobe structures, such as the 
hippocampus, did not show differences in gray matter density between 
the two cognitive performance groups, consistent with the results from 
the ROI-based volumetry study [42]. 

Structural correlation networks

Volumes in four areas that were found to be significantly different 
between the two cognitive groups, were designated as the “seeds,” and 
further correlation analyses were conducted between the seeds and the 
rest of the brain regions. It is of note that correlation between these 
seeds were highly correlated. The correlation between the right and the 
left precuenus was .952, the right precuneus and the right SFG .803 , the 
right precuneus and left MFG .782, the left precuneus and the right SFG 
.760, the left precuneus and the left MFG.746 , and the right SFG and the 
left MFG .663. The coefficients were larger in the NCP group, reaching 
significant difference in correlations of the left MFG with the right 
precuneus (p=0.018) and the left precuneus (p=0.031,) respectively. The 
group differences, however, did not survive the multiple-comparison 
corrections (p=0.05/6). 

The structural correlation analysis between each of the four seeds 

Brain Regions
MNI 

Coordinates
Number 

of 
Voxels

LCP (n=13) NCP (n=13) t
x y Z

Precuneus (L) -3 -67 30 2150 0.4709 ± 0.0726 0.5644 ± 0.0976 5.26
Precuneus (R) 6 -75 22 1176 0.3817 ± 0.0708 0.4756 ± 0.0988 5.22
SFG (R) 39 14 55 101 0.2340 ± 0.0279 0.2972 ± 0.0523 5.34
MFG (L) -31 26 38 209 0.2296 ± 0.0318 0.3306 ± 0.0836 5.12

SFG: Superior Frontal Gyrus; MFG: Middle Frontal Gyrus
Table 2: Brain regions that were smaller in the LCP individuals compared to the 
NCP individuals at baseline.
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and the 116 regions of interest (ROIs) were done to identify more 
comprehensive networks associated with the seeds, and yielded four 
seed-based networks that are depicted in (Figure 2). The precuneus-
seeded network demonstrated significant correlations with lateral and 
medial frontal regions as well as medial parietal and occipital regions. 
Interestingly, the frontal seeds showed similar correlation patterns 
(Figure 2). We further compared the two cognitive performance groups, 
and found that correlation coefficients between cortical regions were 
generally greater in the NCP group (Table 3) for detailed results of the 
permutation tests.) The areas that showed significant group differences 

were found mostly in the precuneus-seeded networks. As depicted in 
(Figure 3), the precuneus seeds had significantly higher correlation with 
the posterior cingulate cortex (PCC), the Calcarine cortex, right lingual 
gyrus, and the paracentral lobule in the NCP group compared to the 
LCP. Similar difference was found with the right SFG-seeded network in 
the right Calcarine cortex, right lingual gyrus, and the cuneus. The left 
MFG-seeded network showed group difference in the PCC and the left 
paracentral lobule. The significance of the group difference, however, 
did not survive the multiple-comparison correction (p < .05/116.) 

Brain regions and cognitive functions

Many cognitive scores correlated significantly with the four seeds. 
As predicted, the total score of the K-DRS correlated significantly 
with the gray matter density of the areas (Table 4) for the correlation 
coefficients and top figure of (Figure 4). Further, the correlation patterns 
between the K-DRS Total and the 116 ROIs in the two cognitive groups 
were investigated to find how brain regions were differently associated 
with overall cognitive functioning. The K-DRS Total score and the gray 
matter density of the LCP individuals correlated more strongly than 
the NCP in the precuneus, the rectus, the vermis, the hippocampus, 
the frontal cortex, the posterior cingulate cortex, and other cerebellar 
regions as shown in (Figure 4). All the correlations were stronger in 
the LCP group. Scatter plots between the right precuneus, where the 
difference in correlation was the largest, and the K-DRS Total for both 
groups are shown in (Figure 5).

Discussion
Neural substrates of reserve

This study found that non-demented elderly individuals with low 

Figure 1:  Brain regions significantly smaller in the LCP group compared to 
those in the NCP.

Figure 2:  Structural correlation map between the four seeds and the 116 AAL-ROIs across the combined group of LCP and NCP subjects.  Only positive 
correlations were found at p<0.05.
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cognitive performance (LCP) had significantly smaller gray matter 
volume or density in bilateral precuneus, the right superior frontal gyrus 
(SFG), and the left middle frontal gyrus (MFG) compared to those with 
normal cognitive performance. A subsequent correlation analysis with 

the four regions used as the seeds was conducted to further investigate 
the neural substrates underlying cognitive differences, which revealed 
an overlapping network of cortical regions that consisted of bilateral 
precuneus, the posterior cingulate cortex, paracentral lobule, the lateral 
and medial frontal regions, the angular gyrus, and the medial and 
lateral occipital cortex. Moreover, the network differed significantly in 
its strength of correlation in the two cognitive performance groups; i.e., 
demonstrating greater correlation in the NCP group in the precuneus-
seeded networks which primarily consisted of the posterior cingulate 
cortex, the Calcarine cortex, and the paracentral gyrus. Frontal seeded-
networks showed the same pattern of greater correlation in the NCP 
group albeit with less significant regions. Lastly, the K-DRS Total 
score demonstrated association with the volume or density of the 
precuneus, and this association was stronger in the LCP compared to 
the NCP group. This pattern of stronger correlation between the K-DRS 
Total score and the gray matter volume of various brain regions was 
observed in other brain regions, such as the orbital frontal cortex, the 
hippocampus, the posterior cingulum, and the vermis of cerebellum. 

Nature of low cognitive performance 

It is unlikely that smaller regional gray matter volumes observed 
in the LCP group was due to mild cognitive impairment or preclinical 
dementia, since no LCP individuals showed decline, instead 
demonstrated improvement, in cognitive performance for 4 years 
following the initial assessment [47]. No atrophy was found in the 
medial temporal structures of the LCP individuals [42], which are often 
found to be smaller in individuals with mild cognitive impairment. 
Lastly, the subject recruitment procedure precluded elderly individuals 
with complaints of cognitive decline reported either by the individual 
him/herself or by the family member. 

The true nature of lower cognitive performance in these individuals 
may be elusive, since we do not have access to their childhood and early 
adult cognitive performance. Nonetheless, several characteristics of 
the LCP individuals suggest that their cognitive performance reflects a 
longstanding cognitive functioning status possibly related to intelligence 
or cognitive reserve. First, a previous study found that intracranial 
volume (ICV) was significantly smaller in the LCP individuals compared 
to those of the NCP group [42], demonstrating that their brain reserve 
was smaller than the normal cognitive functioning individuals. But 

Precuneus (R) Precuneus (L) SFG (R) MFG (L)
AAL region AAL region AAL region AAL region
Mid Frontal, R 0.047 Sup Frontal, L 0.043 Calcarine, R 0.0294 PCC, L 0.015
PCC, L 0.004 IFO, L 0.046 Cuneus, L 0.0292 PCC, R 0.049
PCC, R 0.007 PCC, L 0.014 Cuneus, R 0.0204 Paracentral, L 0.029
Calcarine, L 0.027 PCC, R 0.008 Lingual, R 0.0472
Calcarine, R 0.006 Calcarine, L 0.025
Cuneus, L 0.036 Calcarine, R 0.005
Cuneus, R 0.018 Cuneus, L 0.033
Lingual, R 0.032 Cuneus, R 0.021
Sup Occipital, R 0.042 Angular, R 0.011
Mid Occipital, R 0.040 Precuneus, R 0.025
Inf Occipital, L 0.038 Paracentral, L 0.023
Angular, R 0.005 Vermis 10 -0.017
Precuneus, R 0.034
Paracentral, L 0.024
Vermis 10 -0.048

MFG: Middle Frontal Gyrus; SFG: Superior Frontal Gyrus; PCC: Posterior Cingulate Cortex; IFO: Inferior Frontal Operculum
Note the p-levels are sign-weighted with positive depicting LCP<NCP negative LCP>NCP and that only results at p<0.05 are listed

Table 3: AAL regions that showed significant difference in correlation with the seeds between the two cognitive performance groups.

Precuneus (L) Precuneus (R) SFG (R) MFG (L)
K-DRS

Total 0.489* 0.435* 0.451* 0.567**
Attention 0.398 0.427* 0.541** 0.456*
Initiation/Perseveration 0.442* 0.348 0.375 0.462**
Construction 0.044 0.035 -0.021 0.183
Conceptualization 0.353 0.341 0.266 0.510*
Memory 0.432* 0.316 0.322 0.387

EMS
EMS LTM Recall 0.515* 0.463* 0.466* 0.557**
EVLT

Learning 0.450* 0.355 0.370 0.513* 
S-D Free Recall 0.588** 0.452* 0.429* 0.317 
S-D Cued Recall 0.562** 0.458* 0.423* 0.518* 
L-D Free Recall 0.425* 0.409 0.453* 0.432*
L-D Cued Recall 0.617** 0.540** 0.534** 0.473*
Recognition 0.264 0.209 0.329 0.261

SRFT
Copy 0.304 0.368 0.283 0.372
Immediate 0.233 0.311 0.241 0.419*
Delayed 0.290 0.312 0.276 0.431*

Story Recall Test
Immediate 0.468* 0.383 0.431* 0.429*
Delayed 0.525* 0.429* 0.444* 0.500*
Recognition 0.359 0.259 0.239 0.214

Clock Drawing Test (Total) 0.405 0.351 0.286 0.455*
K-BNT (15 item)*** 0.152 0.093 -0.109 0.054
Go-No-Go Test 0.357 0.292 0.199 0.356

*p<0.05, **p<0.01; MFG: Middle Frontal Gyrus; SFG: Superior Frontal Gyrus; 
K-DRS: Korean-Dementia Rating Scale; EMS: Elderly Memory Disorder Scale; 
EVLT: Elderly Verbal Learning Test; SRFT: Simple Rey Figure Test; K-BNT: Korean-
Boston Naming Test (*** data were missing for four subjects; 1 NCP, 3 LCP) 
Table 4: Partial correlation coefficients between neuropsychological measures and 
volumes of the key voxels controlled for age, sex and intracranial volume.
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Figure 4: AAL brain regions whose gray-matter density correlated significantly with the K-DRS across both LCP and NCP groups (top).  Regions that demonstrated 
significantly higher correlation between the volume and the KDRS Total score in the LCP group compared to the NCP as ascertained by a permutation test with 10,000 
iterations. Green indicates larger correlations for the LCP, p<0.05 (bottom)

Figure 3:  Significant differences in correlation in the two cognitive performance groups between the gray-matter density of 116 ROIs and right and left precuneus, 
respectively, as ascertained by a permutation test with 10,000 iterations. Red indicates larger correlations for the NCP, green indicates larger correlations for the 
LCP, p<0.05.
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more importantly, all LCP individuals grew up in remote rural areas 
where educational opportunity was slim and not required for their 
livelihood. They were mainly farmers who all received equivalent or 
less than 6 years of schooling, a few not attending school at all. Since the 
NCP individuals were matched in terms of years of schooling, however, 
simple duration of education do not explain their low performance 
completely. Literacy, one of the basic outcome of schooling, probably 
could add more information to the quality of educational experience 
elderly individuals had. Approximately half of the LCP individuals were 
functionally illiterate, while everyone in the NCP group was literate 
despite similar years of schooling. Therefore, the lack of opportunity or 
ability to learn to read or write could be one of the factors differentiating 
the two cognitive groups as observed in previous studies [48,49]. Since 
limited years of education was the necessary condition for all low 
cognitive performance in our sample, albeit not a sufficient one, and 
literacy an additional dimension, it becomes clear that low cognitive 
performance in this population reflected life experience that was 
cognitive in nature. It appears that LCP individuals were not able to 
develop cognitive functions or brain to their full potential, most likely 
due to their limited educational experience. This is consistent with the 
finding that education narrows the variance of cognitive performance, 
especially boosting the performance of those in the lower strata [50]. 
We cannot, however, rule out the contribution of gene in cognitive 
performance. Since the two cognitive groups did not differ significantly 
in the apo e4 status, other genetic variations may have contributed to 
the cognitive differences in tandem with their educational experience.

Strength of connectivity and cognitive performance

Structural correlation analysis was able to further specify the neural 
substrates of cognitive difference in the elderly people; i.e., the reduced 
correlation in the seeded neural networks of the LCP elderly individuals 
compared to those of the NCP. The origin of this weaker connectivity 
or coherence of the cortical regions in LCP may be limited cognitive 
activities. A recent study examining the effects of education on brain 
metabolism reported findings supportive of this interpretation, showing 
that low educational attainment was associated with less functional 
connectivity especially in the long-distance connections [47], making 
them more vulnerable to both random and targeted attacks. The 
diminished cortical connectivity underlying low cognitive performance 
in the elderly individuals may be similar in nature, possibly making 

them more vulnerable to aging and neurodegeneration. In fact, elderly 
people with LCP in the larger community sample have been found 
to have significantly increased risk, i.e., five times greater chance of 
developing dementia seven-years later, despite the fact that there was 
no decline in cognitive functions in the LCP elderly group during the 
initial four years of follow-up (Shin et al.[33]) In view of these results, 
we propose that a cortical network consisting of bilateral precuneus, 
the right frontal gyrus, and the left middle frontal gyrus could be one 
of the key brain regions that constitute the neural substrates of reserve. 

Correlation between precuneus volume and general cognition

An interesting finding of this study is that a measure of general 
cognition, the K-DRS Total score, correlated with the seed regions 
more strongly in the LCP compared to the NCP, especially in the 
precuneus. This is consistent with a previous study that found head 
circumference predicted the risk of dementia only in nuns with low 
but not high educational attainment; i.e., individuals with smaller 
head circumference had greater chance of developing dementia only in 
the low education group [51]. (Mortimer, Snowden, and Markesbery, 
2003.) It appears that brain volume makes a greater difference in 
cognitive performance in individuals who lack or have low cognitive 
reserve, while it has limited effect in those with relatively high cognitive 
reserve. These findings of stronger association between brain size or 
volume and cognitive function are consistent with the cognitive reserve 
theory that proposes that individuals with higher reserve can cope with 
the pathology better via more efficient utilization of brain network 
[2], while those with low reserve will depend more on the size or the 
volume of the brain. More efficient utilization of the brain network 
assumed in the high cognitive reserve individuals could be mediated 
by stronger correlation or coherence of relevant cortical regions, as 
our findings suggest. Yet, the proposed cortical network was based on 
structural correlation of brain regions, which did not allow ascertaining 
the relationship between coherence and cognitive performance at an 
individual level. Studies investigating the functional connectivity from 
resting fMRI and its relation to cognitive function are needed to validate 
the proposed network. 

Precuneus and its associated network

While the prefrontal cortex has been acknowledged as the brain 
region involved in many higher-cognitive functions [52], the role of 
precuneus in various cognitive functions has been revealed only more 
recently, mainly through functional neuroimaging studies [53]. Nestled 
in the medial portion of the posterior parietal lobe (BA 7 and 31) with its 
rich connection to association cortices and subcortical structures, it is 
activated during a host of tasks that require various cognitive functions, 
such as retrieval of episodic memory [54], visuospatial imagery [55], 
working memory [56] reasoning [57], and self-relevant processing 
[58,59]. More recent connectivity studies have also found that the 
precuneus is one of the key hubs in the human brain where long-
distance connections as well as local connections are abundant both 
structurally [60] and functionally [61], thereby playing a strategically 
important role in various cognitive functions. In particular, the central 
precuneus, where the gray matter volume difference was found between 
the two cognitive performance groups, has been demonstrated to be 
structurally and functionally connected to areas involving associative 
and higher-cognitive functions, such as the inferior parietal and the 
dorsolateral prefrontal cortices as well as the medial temporal area 
[62]. Therefore, the precuneus appears to be one of the optimal brain 
regions that could underlie overall cognitive functioning differences, 
and contribute to the neural substrate of reserve, which would waive 

Figure 5:  Scatter plots between the right precuneus volume and the K-DRS 
score in the LCP (r = .666) and the NCP (r= - .412) groups. The correlation 
coefficients of the two group differed significantly (p = 0.0076.)
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off the impact of neuropathology in dementias. The fact that precuneus 
regions showed the greatest difference in the structural correlation map 
between the two cognitive performance groups further supports this 
hypothesis.

In terms of aging, the frontal lobe, specifically the prefrontal cortex, 
is the most vulnerable brain area [63,64], diminishing its volume at 
the rate of five percent every decade since adulthood in human. On 
the other hand, many studies have identified the precuneus as one of 
the brain regions that are affected early in AD [65,66] or even in its 
prodromal phase [67,68]. It is also a region that has lower brain glucose 
metabolism in the mild cognitive impairment elderly people who later 
converted to AD [69].Smaller volumes and weaker connectivity from 
these two brain regions are likely to make the brain vulnerable to the 
effects of aging and degenerative changes, further supporting their role 
in moderating the development of dementia. 

Caveats and Summary

Limitations of the study must be addressed. Although this study 
was part of a six-year follow-up study, this study in itself was cross-
sectional, so the inference about the risk of dementia based on the 
community-sample is indirect and should be interpreted with caution. 
We recognize that the sample size was very small, and comparison of 
groups in the correlation analyses did not reach the corrected threshold 
for multiple comparison. Future studies, therefore, with larger sample 
with different population are necessary. However, we would like to note 
that since the definition of LCP is based on normative data, they make 
up only 5-15% of the community-residing elderly population.

In summary, this study has found areas in the brain that are likely 
to be part of neural networks supporting brain reserve. Bilateral 
precuneus and its associated network was found to be less developed in 
elderly people with low cognitive performance compared to the normal 
performing counterpart, and these regional differences could mediate 
the risk of dementia in elderly individuals. Elucidating the neural 
substrates of reserve that are associated with cognitive performance 
would have implications for developing neuro-cognitive tools or 
programs for elderly people who are at greater risk for dementia due to 
low cognitive reserve. 
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