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Abstract
Sleep is an invigorative biological process which cannot be defined as such, but is organized through intricate 

interactions between various brain regions and neurochemistry. Sleep endures physical and cognitive performance, 
health and well-being; even mild sleep restriction degrades behavioural performance over a few days. Sleep 
deprivation (SD) leads to an array of disorders such as cognitive dysfunctions, attention deficits including coordination 
and concentration. A decrease in the cortical sensitivity to an incoming stimuli leads to defect in attention. Also sleep 
deprivation leads to elevated levels of excitatory neurotransmitters and abnormalities in certain other neuromodulators 
which ultimately has effects on neuronal and executive functions. Inspite of wide-cut literatures availability on the 
neurochemical deviations following sleep deprivation, this review focuses on the major neurotransmitters effects 
leading to behavioural alterations and the concomitant brain region activities. 
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Introduction
Sleep comprises almost one-third of human life and is common 

to all animal species, yet its impact on health and medical conditions 
remains unknown [1]. Sleep should be viewed in the context of other 
forms of “adaptive inactivity” and is subdivided into rapid eye movement 
(REM) sleep, characterized by high-frequency electroencephalogram 
(EEG) recordings and muscle atonia and non - REM (NREM/slow-
wave) sleep, characterized by low frequency EEG recordings and body 
rest [2,3]. What is most remarkable about sleep is not the impassiveness 
or vulnerability it creates, but rather its ability to reduce activity and the 
body and brain metabolism [4]. The quality of life, performance, and 
mental well-being are all adversely affected by even a single night’s loss 
of sleep. Sustained sleep deprivation (SD) impairs central thermostat, 
metabolism and immune functions, and leads ultimately to death. 
Accumulated sleep pressure caused by prolonged wakefulness can 
impair cognitive function [5]. SD is prevalent in various occupations 
and individuals including shift workers, medical personnel, military, 
children who do not have regular sleep cycles, and individuals with 
sleep disorders. SD in human is broadly classified into three categories: 
total sleep deprivation (TSD), partial sleep deprivation (PSD) and sleep 
fragmentation. TSD is the complete lack of sleep for at least one night 
and often longer. PSD involves restricted sleep for multiple nights, that 
is, individuals obtaining an inadequate amount of sleep for several 
consecutive nights. Sleep fragmentation is repeated awakenings from 
sleep throughout the night. This result in a decreased amount of sleep 
but a normal time spent in bed [6].

Empirical reports on neurophysiological and biochemical methods 
explain the fundamental mechanisms underlying sleep regulation. 
Neurophysiological methods helped in identification of circuits 
involved in NREMS regulation, such as corticothalamic projections 
and the hypothalamic ventrolateral preoptic and median preoptic 
circuits, and the REMS regulation, such as laterodorsal tegmental 
nucleus. Satisfactory explanations of how these circuits impose sleep on 
the brain and how they keep track of past sleep–wake activity likely will 
involve the biochemical mechanisms that interact with these circuits 
[7]. The control mechanism of sleep are established at every level of 
biological organization, from genes and intracellular mechanisms to 

networks of cell populations, and to all central neuronal systems at 
the organismic level, including those that control movement, arousal, 
autonomic functions, behaviour and cognition [8]. Experimental data 
have shown that many brain regions possess specific functions in 
sleep at its each structural level. Strong evidences suggest that sleep 
is homeostatically regulate, it possess beneficial effects on cognitive 
functions and it helps in memory consolidation and desaturate the 
ability to learn [9-13].

This review focuses on the consequences of chronic sleep restriction 
on brain vulnerability, with characteristic emphasizing on systems 
that have been associated in psychopathology. Literatures suggest that 
deprivation in sleep increases the risk to develop psychopathology, 
although the mechanisms underlying this effect are largely unknown. 
Loss of sleep could increase the risk for psychopathology acting on 
various neurobiological systems. The review focuses on the effects of 
sleep loss on neuromodulatory effects leading to behavioural alterations 
and the concomitant brain region activities.

Sleep Deprivation and Neurotransmitters 
The most conspicuous changes that occur during sleep loss 

are the neuromodulatory transitions and effective control of these 
transitions is critical for fitness and survival. In the brain, activity of 
neuromodulatory neurons, grouped within nuclei of the midbrain and 
brainstem, co-varies with the psychological and physiological factors, 
thereby mediating behavioural state in the central nervous system. 
This is how cognitive processes, including focused attention, learning, 
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memory, and even perception are impacted by the behavioural state 
[14]. The subcortical neuromodulatory circuits involved in sleep-
wake control also play important roles in the regulation of arousal 
and attention, and malfunctioning of these circuits causes a variety of 
cognitive impairments. 

The ascending activating reticular system (ARAS) projecting to 
the thalamus, hypothalamus, basal forebrain, and neocortex in the 
brain are the critical regions in sustaining wakefulness and responsible 
for cortical activation. This ascending system of brain comprises 
the major brain neuromodulatory systems – acetylcholine (ACh), 
dopamine (DA), norepinephrine (NE), and serotonin (5-HT)-all but 
DA are under strict regulation across the sleep cycle. In waking, these 
neuromodulators are released at high levels, activating the inositol 
triphosphate/diacylglycerol (IP3/DAG) and cyclic AMP second-
messenger systems, thereby reducing neuronal K+, causing neurons 
to be tonically depolarized [15]. In REM sleep, this same result is 
achieved by release of acetylcholine alone, as release of serotonin and 
norepinephrine in REM sleep is minimal [16-18]. In non-REM sleep, 
these neuromodulators are all released at relatively low levels, and 
hence neurons are relatively hyperpolarized in this state.

Cholinergic System
Acetylcholine (ACh) is a fast-acting, steeplechase cholinergic 

neurotransmitter present at the neuromuscular junction and in the 
autonomic ganglia [19]. Pontomesencephalic tegmentum projection, 
laterodorsal tegmentum, medial habenula, thalamus, hypothalamus 
and the basal forebrain (BF) complex including the medial septum 
contains ACh -containing neurons [20-23]. These cholinergic neurons 
apart from its role in wakefulness have been included in control of much 
wake-promoting behaviours such as attention, sensory procession and 
learning. It was found that behaviourally pertinent signals from the 
sensory inputs induce a transient increase in the PFC ACh levels and 
the subsequent activation of cholinergic transmission improves the 
performance of sustained attention task [24].

ACh changes the neuronal excitability, influences synaptic 
transmission, induces synaptic plasticity, and coordinates firing of 
groups of neurons. ACh signals through two classes of receptors: 
metabotropic muscarinic receptors (mAChRs) and ionotropic 
nicotinic receptors (nAChRs) [25,26]. Inhibition of cholinergic nuclei 
resulting in reduced cortical levels of ACh is a major effect caused by 
SD. SD discharges these Ach-containing neurons which fires at lower 
rate during slow wave sleep and at higher rates during paradoxical 
SD [27]. Ninety-six hours of REM sleep deprivation increases acetyl 
cholinesterase in the pons, thalamus, and medulla oblongata, but not 
in other brain regions including the hippocampus. It is important to 
note that the pons contains cholinergic cells involved in the generation 
of REM, while the thalamus and medulla oblongata receive cholinergic 
input from the pons. The higher levels of acetyl cholinesterase suggest 
that there is a higher turnover of acetylcholine in these regions as a 
consequence of SD [28].

Empirical reports on neurotoxin induced lesions on FB cholinergic 
neurons further edify the pivotal role of ACh in learning and memory 
tasks which showed that decrease in ACh leads to certain behavioural 
deficits. Experimental studies for cognition involving locomotors 
activation showed correlation between levels of ACh and motor 
activity. The cholinergic neurons are also highly active during REM 
sleep [29-31]. The descending projections from cholinergic neurons in 
the brainstem inhibit motor neurons producing atonia. ACh improves 

cortical plasticity in adult mammals, and has been suggested that ACh 
may modulate molecular mechanisms of memory consolidation [32].

The role of ACh in learning and memory has been reviewed by 
Hasselmo [33]. It was proposed that high ACh biases the system for 
memory encoding, while low levels bias the system towards recall. 
ACh levels in the hippocampus are significantly greater during REM 
than during wake, while neocortical levels are similar in the two 
states. High levels of ACh release block K+ channels, depolarizing 
membrane potential and increasing membrane resistance. Impairment 
of attention which is vital for almost all the cognitive processes occurs 
due to SD and this neuromodulator is especially linked to vigilance 
and attention [34]. Sustained attention otherwise termed as vigilance 
refers to constant allocation of processing resources for detecting an 
important event. Diminishment in the process of sustained attention 
performance is widely thought out to be the most sensitive and simple 
way of measuring behavioural deficit produced by sleep disruption 
[35]. Hence, sustained attention impairments are widely used as an 
indirect measure of sleepiness. 

ACh has impact on synaptic plasticity and dynamics of local 
circuits through astrocytic control of synaptic Ca2+ concentration 
following nAChR stimulation [36]. Astrocytic signalling can lead to 
LTP as a result of the temporal coincidence of the postsynaptic activity 
and the astrocyte Ca2+ signal simultaneously evoked by cholinergic 
stimulation [37]. Receptor expression studies have indicated that 
REM sleep deprivation reduces muscarinic M2 cholinergic receptors 
in the pons and hippocampus [38]. The prominent role of cholinergic 
system in selective attention was well shown by the effects of attention 
and activation of forebrain. The activation of basal forebrain causes 
decreased interneuronal correlation and increased sensory – driven 
response dependability in the visual cortex. This decline in the cortex 
interneuronal correlation was found to be mediated by mAchRs 
whereas the improved visual response was found to be mediated by 
nAChRs-dependent amplification of thalamocortical transmission 
and/ or mAChR-dependent firing rate increase within the cortex 
[39-41]. Further reports by Parikh et al. suggests that cholinergic 
transmission can be regulated in a task dependent manner add up the 
credibility of its involvement in attentional modulation. 

Serotonergic System
The Serotonergic system is subtle to sleep loss and serotonin 

(5-hydroxytryptamine, 5-HT), play a possible role in sleep deprivation. 
Extracellular 5-HT levels are highest in waking, lower in SWS, and 
lowest in REM sleep, in all brain regions, including the frontal cortex 
and the hippocampus [42-44]. Anti-depressant studies showed 
dysfunction of serotonin and that most antidepressant drug therapies 
are thought to act by increasing serotonergic neurotransmission [45]. 
Altered intracellular and extracellular 5-HT concentration during 
development and adulthood periods lead to increased anxiety and 
stress-related behaviours. [46,47]

5-HT possess a multifaceted system of different receptor 
subtypes, through which it is involved in the regulation of emotional, 
neuroendocrine, cognitive and motor functions in the central nervous 
system (CNS) [48-50].The localization of serotonin receptors in central 
motor-related centers also suggest that they are involved in locomotors 
activity, probably by modulating the release of neurotransmitters 
such as γ- amino butyric acid (GABA) from striatal neuron terminals 
[51]. Both depotentiation and habituation to an environment where 
inhibited by 5-HT agonist application [52]. 5-HT agonist application 
also improved acquisition but impaired memory consolidation [53].
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In a study by Toru et al. it was observed that the tissue concentration 
of 5-hydroxyindoleacetic acid (5-HIAA), the principal 5-HT metabolite 
was elevated in the dorsal raphe nucleus and thalamus of rats that were 
deprived of sleep for 24 h. SD also enhances the serotonin turnover 
and decreases serotonin transporter binding in some brain areas. 
Furthermore, total sleep deprivation in cats increases mean firing rates 
of serotonergic neurons in the dorsal raphe nucleus by 18% [54-57]. 
The effects of chronic sleep loss on the serotonergic neurons are not 
well known; however, chronic sleep restriction in animals has been 
shown to cause a gradually developing desensitization of the Serotonin-
1A receptors (5-HT1A) [58,59]. It has been suggested that this effect 
could be the result of the repeated stimulation of these receptors due to 
an enhanced serotonin release. The increased serotonin release during 
SD occurs in a manner independent of stress [60]. The spontaneous 
activity of serotonergic neurons throughout the brainstem is strongly 
dependent on the behavioural state. Serotonin also inhibits cholinergic 
transmission in basal forebrain (BF), thereby creating sleep homeostatic 
pressure in the BF [61]. 

Among its different 5-HT receptors, 5-HT1 and 5-HT2 types are 
the ones studied most in relation to vigilance. Reduced serotonergic 
transmission and reduced sensitivity of the 5-HT1A receptor system 
represent a potential pathway through which sleep loss may alter 
neuronal plasticity and enhance the sensitivity to neurodegeneration. 
Desensitization of 5-HT1A receptor caused due to chronic sleep 
deprivation leads to neurodegeneration [62]. Literatures show that 
both metabotropic and ionotropic 5-HT1A receptors are involved in 
learning and memory as well as in a wide array of cognitive disorders 
and emotional dysregulation [63-65]. Mice lacking the 5-HT1A 
receptor have been shown to have increased anxiety, as shown by 
decreased time in the open arms of the elevated plus maze test [66]. 
5-HT2ARs are found in the cortex and basal ganglia, and mediate 
certain behavioural syndromes. 5- HT2 receptors (A, B and C subtypes) 
activate phospholipase C (PLC), and can be considered excitatory. 
Out of these three subtypes 5- HT2C receptor plays an important 
role in regulation of synaptic plasticity, as it activates the phosphor-
inositol signalling pathway thereby leading to L-type Ca2+ channels 
opening following release of calcium stores. These data suggest a role of 
serotonin in the effect of sleep deprivation. In addition to this, 5 – HT 
is also implicated in a variety of behaviours including hunger/feeding, 
aggression, anxiety and mood. 

Noradrenergic System
Norepinephrine (NE) is one of the main neurotransmitters involved 

in arousal. Being an initiator for maintaining sustained periods of alert 
waking, the noradrenergic system could be a suitable and prospective 
target in the treatment of sleep-wake disorders. Lateral hypothalamus, 
basal forebrain and the cerebral cortex comprises noradrenergic 
neurons. Neurons of the brainstem nucleus locus coeruleus are the sole 
source of noradrenaline, a neuromodulator that has a key role in all 
of these forebrain activities such as sleep – wake cycle and other stress 
responses [67]. 

NE levels increase early in both total and REM sleep deprivation. 
NE can enable various forms of activity-dependent synaptic plasticity 
and can stimulate gene transcription. NE seems to be essential for 
working memory and focusing of attention [68,69]. Finally, there 
is a growing body of evidence from rodent, primate, and human 
studies that the LC-noradrenergic system plays an imperative role in 
attentional shifting and behavioural flexibility [70-74]. It was shown in 
a recent study that the LC noradrenergic neurons during NREM sleep 

possess increased firing rates which in turn enhance synaptic plasticity 
and facilitate memory consolidation [75,76].

Dopamine β-hydroxylase knockout (Dbh -/-) mice lacking NE 
showed altered sleep and arousal patterns. They show decreased latency 
to sleep after stress, require stronger stimuli to wake them after sleep 
deprivation, and have increased overall sleep, in a 24 h period [77-79].
REM SD exhibited a considerable decline in single – unit activity of 
noradrenaline in cat and concentration of noradrenaline in rat when 
measured in locus coeruleus (LC) [80,81]. Noradrenergic neurons are 
tonically active in all states except REM sleep. They influence synaptic 
excitability and plasticity and fall uniquely silent during REM sleep. 

The decrease or absence of NE due to SD leads to depotentiation, 
and either stimulation of the noradrenergic cells of the locus coeruleus 
(LC), or direct intracerebroventricular application of NE enhances 
and prolongs LTP [82]. A longer REM SD (72 h) led to an elevated 
noradrenaline concentration and turnover in the rat LC [83,84]. 
Furthermore, the waking-induced expression of transcription 
factors and neurotrophins in rat cerebral cortex, which depends on 
noradrenergic input, is maintained during 3-8 h of total SD [85].

The LC-NE system plays a prominent role in the regulation of 
immediate early genes (IEGs); genes which is up-regulated selectively 
during short (3 h) period of wakefulness. Systemic administration 
of α2 -noradrenergic receptor antagonist or direct infusion of NE 
increases the NE level with subsequent increase in IEGs such c-fos, 
nur77, tis-7, tis-21 and zif-268. This suggests that the LC-NE system by 
regulating the IEGs, plays a perceptible role in the regulation of long-
term plasticity and behavioural plasticity of forebrain circuits [86,87]. 
The correlation between sustained attention (vigilance) and forebrain 
activity patterns is measured in terms of EEG and it might be drawn to 
a conclusion that the relationship between EEG and forebrain activity 
pattern would have curtailed from the modulatory actions of LC-NE 
[88]. An increased level of NE was found in response to stressors such 
as alarming, threatening or even noxious. Similarly the crucial role 
of LC-NE system in behavioural and EEG indices of waking are well 
documented by suppression of LC neuronal discharge activity and 
NE activity which is caused by systemic administration of α2- agonist 
[89,90]. 

Dopaminergic System
Dopamine acts as a key neurotransmitter which plays a pivotal 

role in regulation of motor and limbic functions. Experimental reports 
show evidence that dopamine (DA) modulates wakefulness exerting 
a wake promoting action. An increased level of DA was observed 
during waking as well as in association with behavioural arousal [91]. 
Empirical reports also suggest that the mesolimbic dopaminergic 
(ML-DA) reward system is activated during sleep. Neurophysiological 
studies in animals have revealed that regions of the ML-DA circuit 
such as the nucleus accumbens and the ventral tegmental area show 
increased bursting neural activity during rapid-eye movement (REM) 
sleep and a role of dopamine in the generation of REM sleep has been 
suggested [92-94]. Also increased levels of DA in the ML – DA system 
during sleep have been suggested to play a pivotal role in the generation 
of dreams [95,96].

Several behavioural alterations induced by sleep deprivation are 
associated with the dopaminergic system [97-100]. The nigrostriatal 
dopamine (DA) pathway mediates activation of motor activity, 
including exploration, which may promote waking and inhibit sleep, 
although the discharge of nigral neurons is not dependent on vigilance 
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states. DA plays an important role in the control of fine motor actions 
and higher cognitive functions such as learning, working memory, 
attention, decision making, and appetitive and consummatory aspects 
of reward. 

Mice lacking dopamine transporter gene and thus having increased 
synaptic concentrations of dopamine had threefold waking amount 
[101]. The effect of dopamine on sleep-wakefulness may often be 
secondary to influences on motor activity and emotions. In 1978, 
Tufik and colleagues demonstrated an enhancement in DA receptor 
sensitivity after REM sleep deprivation in rats and also a significant 
increase in stereotypic behaviours, including biting, rearing and 
hypothermia in rats. In fact, PSD increased D2 binding in the striatum 
and nucleus accumbens in rats [102]. Their results were complemented 
by Dzirasa et al. whose study demonstrated that dopamine play a central 
role in regulating sleep-wake states and that the action is mediated by 
the D2 dopamine receptor pathway. Studies using dopamine-receptor- 
deficient mice or animals injected with an antisense vector demonstrate 
that dopamine D1 and D2 receptors facilitate behavioural arousal, 
while D3 receptors mediate the opposite effect. D1 and postsynaptic 
D2 receptor agonists increase behavioural arousal and waking, and 
decrease sleep [103]. 

The down regulation of D2/D3R in ventral striatum under SD 
conditions, in addition to contributing to reduced wakefulness, could 
also affect other behaviours. Specifically, DA stimulation of D2/D3R 
in ventral striatum is implicated in attention and thus D2/D3R down 
regulation could contribute to the inattentiveness observed with SD 
[104-106]. Acute sleep deprivation in rats increased goal-directed 
behaviours toward cocaine. In humans, SD increases the risk of 
substance abuse and appetitive behaviour [107-109]. This increase in 
impulsivity and reward seeking post-SD may reflect a compensatory 
mechanism to adjust for the down regulation of D2 and D3 receptors 
in the ventral striatum immediately after SD. This down regulation of 
D2 and D3 receptors might lead to impairment in performance, reward 
learning and decision making after SD. In line with this interpretation, 
Hanlon et al. demonstrated that REMSD reduces the rate of responding 
to the acquisition and maintenance of an operant task for food reward 
in rats, which might be due to a suppression of dopamine activity in the 
nucleus accumbens during REMSD [110,111]. In addition, total SD can 
disrupt the reconsolidation of morphine reward memory [112]. 

GABAergic System
γ-Amino Butyric acid (GABA) is the most prominent inhibitory 

neurotransmitter in the brain mediating inhibitory post synaptic 
potentials [113]. SD induced stress has been reported to alter the 
content of GABA neurotransmitter in the animals suggesting role of 
GABAergic mechanism in the sleep deprivation-induced changes in 
behaviour alterations and oxidative damage in the animals [114,115]. 
SD causes significant alterations in GABA contents as well as an 
elevation of L-glutamic acid decarboxylase (GAD) activity [116].

Fast synaptic inhibition in the adult brain is primarily mediated 
by γ-amino butyric acid receptors (GABArs). Regulation of GABAA 
receptor surface expression at synapses is a process that is critical for 
maintaining the correct level of synaptic inhibition and is important for 
memory consolidation [117]. Wang et al. reported higher GABA levels 
in cortex, hypothalamus, and brain stem after 72 h of sleep deprivation 
in mice. This suggested that sleep deprivation might increase GABA 
tone, leading to increased GABAergic signalling and a suppression of 
activity of excitatory neurons [118]. Modirrousta et al. showed that 
expression of the GABAr β2–3 subunit is enhanced in cholinergic cells 

in the basal forebrain after sleep deprivation, suggesting that one way 
through which prolonged wake reduces cholinergic activity is through 
higher GABAergic activity [119]. Increases in GABABr receptor 
protein levels in hippocampal lysates after 12 h of sleep deprivation 
using the gentle handling method have also been reported by others 
[120-124].

Conclusion
Among the greatest challenges currently facing neuroscientists 

throughout the world, is the quest for a better understanding of the 
neurophysiologic factors in the central regulatory mechanisms of sleep 
and of the mechanism of the transition between one stage of sleep 
and another. Several reports show that there are presently a growing 
numbers of neurotransmitter agents, proposed neurotransmitter 
systems and suspected neurotransmitter agents, in the subject of sleep 
regulatory mechanism. Meanwhile, this review has helped to highlight 
a number of the neurotransmitter systems that have featured more 
prominently and frequently and can be said to be currently the more 
under study by researchers, as well as highlighted the brain areas in 
which each neurotransmitter systems appears to have featured more 
significantly in the subject of the central regulator mechanism of sleep.
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