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Introduction
Alzheimer’s disease (AD) accounts for 70% of all dementias and 

the number of patients with AD is increasing every year [1]. Some 
medications are available to improve the symptoms of AD; however, 
disease-modifying medicine is not adequately developed and studies 
on the pathogenesis of AD are urgently required. AD has two major 
pathological hallmarks: One is the extracellular amyloid beta (Aβ) 
plaque [2], and the other is the intracellular neurofibrillary tangles 
(NFT) that consists of tau protein [3]. NFTs are primarily found in 
the entorhinal cortex and hippocampus, the primary brain regions 
that show functional deficits and degeneration in patients with AD in 
early stages of the disease, and spread to the cortex and other parts of 
the brain as disease progresses [4]. Nonetheless, it is under discussion 
whether NFTs themselves are toxic [5,6]. 

While turning off tau protein expression mitigates neuronal cell 
death and results in the recovery of memory [7], overexpression of 
normal full-length tau does not induce either memory deficits or tau 
oligomers in most cases [8]. In general, it is accepted that conformers 
between monomer and large tangle level aggregates, such as intermediate 
tau oligomers/small aggregates, may be the cause of the disease. 
Compared to normal tau, genetic mutation in or post-translational 
modification of tau facilitates the formation of tau aggregates. Similar 
intracellular protein oligomer and aggregate conformers found in other 
neurodegenerative diseases, such as mutant Huntingtin in Huntington’s 
disease [9,10], Spinocerebellar ataxia type 1 (SCA) in spinocerebellar 
ataxia [11], alpha-synuclein in Parkinson’s disease [12], and TAR DNA-
binding protein-43 (TDP-43) in amyotrophic lateral sclerosis [13] are 
also thought to induce the respective diseases [14]. Therefore, it is 
important to study the tau species between oligomers and aggregates 
found in Alzheimer’s disease, with particular attention to their role in 
memory impairment and the loss of synaptic function.

Tau Oligomers and Aggregates in Tau Pathology
How can tau proteins form oligomers or small aggregates? There 

are two species of tau protein that can readily assemble into oligomers; 
abnormally phosphorylated tau [15] and the caspase-cleaved form 

of tau (TauC3) [16]. Although no genetic tau mutation has been 
uncovered in AD, other neurodegenerative diseases, such as FTD 
with Parkinsonism linked to chromosome 17 (FTDP-17), have several 
tau mutants (TauP301S, TauP301L, or TauR406W) that are likely to 
become highly phosphorylated [17]. Overexpression of these mutants 
in neuronal cells or mouse brain results in hyperphosphorylation of tau 
protein, and the formation of tau oligomers and aggregates in the late 
stages of disease in mice. 

However, the tau pathologies that result from these genetic 
mutations do not lead to memory deficits in many in vivo mouse 
models. The induction of TauR406W expression in the mouse brain 
fails to induce memory deficits until the end of the life span of the 
mouse [18]. Moreover, overexpression of TauP301S in mice does not 
induce significant memory deficits, although the brains display massive 
neuronal loss [19]. Other mice expressing human TauV337M, THY-
Tau22 or hTau40/ΔK280 show memory deficits. However, the memory 
loss observed in these mouse models appears in the late stages of disease 
(>9 months), after significant neuronal loss, which differs from the 
events occurring in the brains of patients with AD where neuronal loss 
occurs after memory loss [20-22]. On the other hand, an AD mouse 
model expressing mutant TauP301L at an extremely high level (>13 
times the normal tau level in mice) exhibits tau aggregation and tangles, 
and early memory deficits (<3 months) that occur before neuronal loss 
(>6 months) [7]. Interestingly, this transgenic tau model shows caspase 
activation and rapid aggregation of tau together with TauC3 at the 
early stages of memory deficits, and only the cells in which TauC3 is 
present show electron microscopy-detectible or Thioflavin S-positive 
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tau aggregates, indicating a potential link between tau pathology and 
TauC3 generation [23,24].

A Role of TauC3 in Tau Oligomer Formation and 
Aggregate-based Memory Impairments

It had been assumed that caspase activation is limited to cell death 
only. However, today, many proteins essential for cell function are 
known to be activated by caspase cleavage [25]. For example, low-level 
activation of caspase can regulate the α-amino-3-hydroxy-5-methyl-4-
isooxazolepropionic acid (AMPA) receptor in the synapses of neurons 
and mediate synaptic transmission [26]. Aβ and multiple stressors 
appear to induce aberrant activation of caspases in neurons [27]. Tau is 
also known to be a substrate for multiple caspases: at least three caspases 
have been shown to participate in tau cleavage and the major form of 
caspase-cleaved tau found in AD brains is the caspase-3-cleaved tau, 
TauC3 [16]. TauC3 is also found in the brains of patients with AD with 
mild cognitive impairment [28], indicating that caspase-cleavage of tau 
is an early event in AD tangle pathology. 

Tau contains a caspase-3 cleavage motif (DMVD) located in the 20th 
amino acid (421th Asp) from the C-terminus [16,28], and cleavage at 
this site can generate TauC3. TauC3 tends to form TauC3 self-oligomers 
or acts as a seed to produce oligomers with full-length tau in vitro 
[29]. Moreover, neurite regression and neuronal loss were observed 
with TauC3/tau aggregates in cultured primary neurons [16,30] and 
in vivo in a TauC3 drosophila model [31], respectively. Interestingly, 
expression of TauC3 in a transgenic mouse (similar level as endogenous 
mouse tau expression) results in learning and memory deficits, with 
synaptic dysfunction occurring as early as two months after birth [32]. 
Notably, tau oligomers appear in the brains of TauC3 mice showing 

memory deficits. Similar to TauC3 mice, a Tau35 transgenic mouse 
model expressing another truncated form of tau (Tau187-441) at a 
relatively low level (<10% of endogenous mouse tau expression) also 
shows memory deficits [33]. It will be interesting to determine whether 
tau oligomers or aggregates also appear together with tau pathology in 
this Tau35 mouse model. 

Then, an important question remains; how does TauC3 cause rapid 
memory deficits in the mouse model? As seen in an in vitro aggregation 
assay and in a fly model [31], TauC3 seems to be critical for the formation 
of both low-n tau oligomers and detergent-insoluble tau aggregates, and 
thereby for memory impairments in the mouse brain. TauC3 is found 
only in tau oligomers in the brains of mice showing memory deficits. 
In addition, soluble oligomers and detergent-insoluble small aggregates 
of tau can be detected in TauC3 mouse brains at a similar time point 
to that of the start of the memory deficits [32]. Moreover, when tau 
oligomers and aggregates are removed by treatment with aggregation 
blockers, such as methylene blue and Congo-red [32] or an autophagy 
inducer, such as rapamycin and pimozide memory [34] and synaptic 
function can be rescued (Figure 1). Similar data are also observed in 
an apoptosin-induced caspase-cleaved tau transgenic mouse model. 
Caspase-cleaved tau boosts the rapid formation of tau aggregates and 
synaptic protein loss [35]. These observations suggest a critical role of 
TauC3 in the formation of tau oligomers and aggregates, which leads to 
tau pathology, synaptic dysfunction and memory deficits.

Of course, other roles of TauC3 in neuronal degeneration are 
possible. FKBP52 (52-kDa FK506 binding protein) and mitochondria 
are essential factors for axonal growth and synaptic function, 
respectively [36,37]. Recently it was shown that TauC3 and its 
oligomers might deplete FKBP52, an autophagy regulator, leading to 

Figure 1: TauC3 accelerates the formation of tau oligomers/aggregates and memory impairments in the transgenic mice. In the AD brain, Aβ, apoptosin, and oxidative 
stress activate caspase, generating TauC3. TauC3 is highly phosphorylated at multiple epitopes, such as PHF-1 and AT100 and forms tau oligomers/aggregates 
together with endogenous tau, leading to synaptic dysfunction via autophagy and mitochondrial malfunction; this results in memory impairments. Lowering tau 
oligomer/aggregate levels with methylene blue or rapamycin rescues memory impairments in TauC3 mice.
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lysosomal malfunction [38]. Given that mitochondria are critical for 
high energy demand fast protein turn-over in synapses [39], TauC3 
might impair mitochondrial dynamics in neuronal cells [40]. Even in 
these situations, it might be the TauC3-harboring oligomers and small 
aggregates that affect axonal growth and mitochondrial dynamics, 
although this requires further clarification. Finally, propagation of 
disease-inducing protein oligomers has emerged as one of the causes of 
neurodegenerative diseases [41]. Propagation of pathogenic tau protein 
is a key issue for AD and other tauopathy progression, and the major 
form of tau conformers responsible for disease is the soluble low-n 
tau oligomers [42]. A recent report also suggested that transmitting 
tau oligomers also build up with TauC3: Treatment with a TauC3 
monoclonal antibody effectively blocked tau transmission in vitro [43], 
highlighting the crucial role of TauC3 in disease propagation.

In summary, the TauC3 mouse might be a disease-relevant model 
of AD and TauC3 is an important therapeutic target for the prevention 
or treatment of AD. In the preclinical study by a biopharmaceutical 
company, TauC3 monoclonal antibody, which binds uniquely to 
Asp421 at the C-terminus of TauC3, reduces certain phosphorylated 
forms of Tau [44]. This kind of therapeutic approach targeting TauC3 
might be useful to treat Alzheimer’s disease and other tauopathies in 
the near future.

Conclusion
Disease-related protein aggregation is indicated as the critical 

source of neurotoxicity in many neurodegenerative diseases. Many 
forms of wild-type and mutant tau proteins, including TauC3, are 
prone to form tau oligomers and aggregates both in vitro and in vivo. 
Of these, TauC3 is known to induce the formation of tau oligomers and 
aggregates in a transgenic mouse model, and this event appears to play 
a role in early and rapid memory impairments. Thus, TauC3 mice may 
be useful for investigating the role of tau in the pathogenesis of AD, and 
for testing drug candidates that interfere or block with the formation of 
tau oligomers and aggregates. To conclude, it is now more important 
than before to better understand tau-based memory loss in AD, in 
particular that related to TauC3.
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