

## Non-Classical MHC Class I Molecules: Structure, Function, and Immunological Significance

Hugh H\*

Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia

### Introduction

The major histocompatibility complex (MHC) plays a central role in the immune system by presenting antigens to T cells. Traditionally, MHC molecules are divided into two major classes: Class I and Class II. However, within MHC Class I, there exists a subset known as non-classical MHC Class I molecules, which, despite structural similarity to classical MHC Class I molecules (MHC-Ia) [1], exhibit distinct expression patterns, limited polymorphism, and specialized immune functions. These non-classical molecules, often referred to as MHC-Ib, include HLA-E, HLA-F, HLA-G in humans, and their counterparts in mice (such as Qa-1, Qa-2, and others). This article explores the structure, types, functions, and immunological importance of non-classical MHC Class I molecules.

### Structural Features of Non-Classical MHC Class I Molecules

Like classical MHC-Ia molecules, non-classical MHC-Ib molecules consist of a heavy  $\alpha$ -chain associated non-covalently with  $\beta 2$ -microglobulin ( $\beta 2m$ ). However, they differ significantly in the following ways:

**Polymorphism:** MHC-Ib genes exhibit minimal polymorphism compared to MHC-Ia genes (such as HLA-A, -B, and -C), which are highly polymorphic to accommodate diverse antigen presentation [2].

### Major Non-Classical MHC Class I Molecules in Humans

#### HLA-E

Binds peptides derived from leader sequences of other MHC class I molecules.

Interacts with the CD94/NKG2 receptors on natural killer (NK) cells, particularly the inhibitory NKG2A and activating NKG2C.

Plays a role in immune evasion by viruses and tumors and in tolerance during pregnancy [3].

#### HLA-F

Less understood compared to other MHC-Ib molecules.

Expressed intracellularly in most cells but can be surface-expressed under certain conditions, such as activation or infection.

Interacts with leukocyte immunoglobulin-like receptors (LILRs), suggesting a regulatory role in immune response.

### Mouse Non-Classical MHC Class I Molecules

**Qa-1 (homolog of HLA-E)** binds leader peptides and regulates NK and CD8+ T cells.

**Qa-2** is involved in embryonic development and immune regulation [4].

**TL (thymus leukemia antigen)** is involved in mucosal immunity and is expressed in intestinal epithelial cells.

#### Functions of Non-Classical MHC Class I Molecules

### Immune Regulation

MHC-Ib molecules modulate immune responses through interactions with specific receptors on NK cells and T cells.

They play roles in immune tolerance, especially during pregnancy and in certain immune-privileged sites.

### Immune Surveillance and Evasion

Tumors and viruses often exploit MHC-Ib molecules to escape immune detection.

For example, HLA-G expression by tumor cells can inhibit immune cell activity and promote tumor survival.

### Clinical Implications and Therapeutic Potential

Given their roles in immune modulation [5], non-classical MHC Class I molecules are emerging as targets for therapeutic intervention:

**Transplantation:** HLA-G is studied for its potential to reduce graft rejection and promote transplant tolerance.

### Conclusion

Non-classical MHC Class I molecules represent a unique and critical component of the immune system. Their restricted expression, limited polymorphism, and specialized functions distinguish them from classical MHC molecules, yet they play equally vital roles in immune regulation, tolerance, and response to stress and infection. As research continues to uncover their complexity, non-classical MHC-I molecules hold great promise for advancing therapeutic strategies in transplantation, autoimmunity, cancer, and infectious diseases. Understanding and harnessing their regulatory potential may pave the way for more targeted and effective immunomodulatory treatments in the future.

### References

1. Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. *Dev Biol* 227: 239-255.
2. She ZY, Yang WX (2015) SOX family transcription factors involved in diverse cellular events during development. *Eur J Cell Biol* 94: 547-563.

---

**\*Corresponding author:** Hugh H, Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia, E-mail: hugh@gmail.com

**Received:** 02-Jan-2025, **Manuscript No:** jcb-25-166805, **Editor Assigned:** 04-Jan-2025, **Pre QC No:** jcb-25-166805 (PQ), **Reviewed:** 18-Jan-2025, **QC No:** jcb-25-166805, **Revised:** 23-Jan-2025, **Manuscript No:** jcb-25-166805 (R), **Published:** 30-Jan-2025, DOI: 10.4172/2576-3881.1000547

**Citation:** Hugh H (2025) Non-Classical MHC Class I Molecules: Structure, Function, and Immunological Significance. *J Cytokine Biol* 10: 547.

**Copyright:** © 2025 Hugh H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

---

- 3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* 126: 663-676.
- 4. Feng R, Wen J (2015) Overview of the roles of Sox2 in stem cell and development. *Biol Chem* 396: 883-891.
- 5. Juuri E, Jussila M, Seidel K, Holmes S, Wu P, et al. (2013) Sox2 marks epithelial competence to generate teeth in mammals and reptiles. *Development* 140: 1424-1432.