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Introduction 
Diffusion tensor imaging (DTI) [1] and diffusion kurtosis imaging 

(DKI) [2] metrics are influenced by cellular tissue properties and tend 
to alter significantly during the life span [3,4] or as a result of various 
pathologies, including schizophrenia [5] and neurodegenerative 
diseases, such as mild cognitive impairment [6], Alzheimer’s, 
Parkinson’s and multiple sclerosis [7-13]. Therefore they are often used 
in between-group comparisons of patients versus control groups and for 
studying the correlations with age or cognitive performance. However, 
the methodology of between-group comparisons and of statistical 
correlation analysis has not been yet sufficiently well established. 
Popular methods include the region-of-interest (ROI) analysis [14,15], 
whole brain voxel-based morphometry (VBM) [16-18] and the track-
based spatial statistics (TBSS) [19,20]. Each of the methodologies suffers 
from specific problems reducing its statistical power or sensitivity. In 
particular, VBM methods require alignment of images to a template 
followed by independent hypothesis tests per voxel which are smoothed 
and corrected for multiple comparisons. The benefit of VBM analysis 
is that it is fully automated and applies to the whole brain without the 
necessity of a priori ROI pre-specification. However, problems might 
arise due to alignment inaccuracies, arbitrary smoothing and clustering 
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procedures, as well as due to requirements for multiple-comparison 
corrections providing challenges for valid statistical inferences [21]. 

A modified voxel-based approach, TBSS, attempts to overcome the 
problems of mis-registration by skeletonizing white matter (WM) tracts 
and considering only the voxels of the mean skeleton derived from FA 
maps. It is fully automated and does not require ROI pre-specification. 
However, since the skeleton is formed only by a small fraction of voxels, 
constituting about 2% of the total number of voxels, potentially useful 
information occurs to be significantly reduced. 

In the ROI-based analyses, diffusion metrics of interest are averaged 
over the voxels of ROIs. The averaged characteristics are relatively 
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simple and sensitive to small changes in parameters of interest [22]. 
The problems, however, are associated with the necessity of manual 
and thus user-biased and time-consuming delineation of the ROIs. The 
ROI-based methods do not enable whole-brain investigations and are 
very susceptible to inter-user variability. Besides, the ROI placements 
appear poorly reproducible in cross-sectional and longitudinal studies 
[22]. 

The atlas-based segmentation tries to overcome these difficulties by 
automatically defining the ROIs using co-registration of the subject’s 
parameter maps with population-averaged stereotaxic WM atlases, 
such as the so-called ICBM-DTI-81 white-matter label atlas and 
Johns-Hopkins-University white-matter tractography atlases [23-26], 
available for open use in the FSL toolkit (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Atlases). However, the atlas-based segmentation appears 
especially sensitive to errors in inter-subject co-registration using 
affine transformations. An additional source of serious problems is the 
influence of partial volume effects (PVE), i.e., the contribution of mixed 
signals from different tissues within the same voxel owing to finite 
imaging resolution [27-29] and/or misregistration. Encountering for 
“wrong” tissue signals due to incorrect segmentation or PVE may give 
rise to significant errors in the analysis of regional diffusion properties 
reducing the accuracy of tissue characterisation, on the one hand and 
leading to variable inferences across studies, on the other. 

Partial volume artefacts at tissue boundaries, especially between 
WM and cerebrospinal fluid (CSF) or grey matter (GM), represent a 
problematic confound in between-group comparisons, in particular 
and in diffusion MRI, in general. Given, in addition, the high degree of 
inter-individual variety, the optimization of the MR-derived measures 
in order to correctly elucidate subtle changes in development, ageing, or 
pathology is of pivotal importance.

The purpose of this work was to demonstrate that the application 
of a simple, robust diffusion-kurtosis-informed template (D-KIT) is 
able to essentially reduce contamination of WM ROIs by PVE from 
neighbouring non-WM (GM and CSF) regions at tissue interfaces and 
improves atlas-based between-group comparisons. The application is 
demonstrated in a DKI study of a group of children versus a group of 
adults. The results are compared before (published recently in [30]) and 
after the use of D-KIT for PVE correction. 

Materials and Method
Subjects

Two groups of healthy volunteers, 20 children (range, 9-12 years, 
mean age, 10.3) and 21 adults (range, 38-64 years, mean age, 54.3) 
underwent DKI after providing written informed consent by themselves 
or by their parents in the case of the children.

Experiments

 In vivo DKI measurements were performed with a whole-body 3T 
Siemens MAGNETOM Tim-Trio scanner (Siemens Medical Systems, 
Erlangen, Germany). The body coil was used for RF transmit and the 
manufacturer’s 12-element phased array coil for signal receive. The 
gradient system provided a maximal gradient strength of 40 mT/m 
and slew rate of 200 T/m/s. Diffusion-weighted images (DWIs) were 
acquired along 30 directions of the diffusion encoding gradients for 
b=0, 1 and 2.8 ms µm-2 using the manufacturer’s double spin-echo EPI 
pulse sequence with TR=10900 ms, TE=112 ms, band width=1628 Hz/
px, number of repetitions=3, total acquisition time=33 min. The voxel 
size was 1.9 × 1.9 × 1.9 mm3.

Post-processing and statistical analysis

Diffusion tensor (DT) scalar invariants (mean, (MD), axial (AD) 
and radial (RD) diffusivities and fractional anisotropy (FA)) and specific 
kurtosis tensor (KT) measures (mean (MK), axial (AK) and radial (RK) 
kurtoses and kurtosis anisotropy (KA)) were determined on a voxel-by-
voxel basis in the whole brain in frame of the DKI analysis [31,32]. The 
post-processing steps were described in detail elsewhere [30]. In brief, 
DWIs were corrected for eddy-current distortions and head motion 
using the FDT toolkit available in FSL [33]; bias due to background 
noise was reduced using the power-images method [34-36]; DT/KT 
metrics were evaluated as described elsewhere with the help of the 
ExploreDTI toolkit [37]. The non-linear affine transformation available 
in FSL was used to align the FA maps to the FA template in the JHU 
space and the transformation matrix was applied for coregistration of 
the non-FA images. For atlas-based between-group comparisons, all 
DT/KT metrics were averaged over 20 WM anatomic regions provided 
by JHU WM tractography atlas available in FSL (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/Atlases). 

The investigated WM structures in this work comprised the left 
and right regions of 7 major association fibres, such as cingulum 
(gyrus) (Cg) and cingulum (hippocampus) (Ch), superior longitudinal 
fasciculus (SLF), SLF (temp), inferior longitudinal fasciculus (ILF), 
inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), the 
left and right regions of 2 projection fibres, anterior thalamic radiation 
(ATR) and corticospinal tract (CST) and 2 commissural fibres, forceps 
major (F_major) (splenium of corpus callosum) and forceps minor (F_
minor) (genu of corpus callosum). Left and right regions of the same 
fibre will be denoted by subscripts “L” or “R” in the abbreviation of the 
fibre. 

A sum of two Gaussian distribution functions was fitted to the 
double peaked- histograms of MK according to 
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where i=1, 2. i
MK  and σi are the means and the standard 

deviations, respectively are the weights of the individual terms 
(p1+p2=1). MKA  is a normalization factor. 

Before and after the D-KIT correction, we evaluated: 

a) Relative changes (ΔA) in percentage between the group mean 
parameter values (Ā) according to ΔA=100*(Āadult – Āchild)/Āchild, 
where A indicates one of the DT/KT parameters.

b) P-values of the between-group two-sided Student’s t-test 
analysis; in the following, p-values will be indicated by means 
of the p-index according to p>0.05 (p0); 0.01<p ≤ 0.05 (p1); 
0.001<p ≤ 0.01 (p2); 0.0001<p ≤ 0.001 (p3); 0.00001<p ≤ 0.0001 
(p4); p ≤ 0.00001 (p5). We shall refer to statistical between-
group differences as significant if p ≤ 0.0025 (after Bonferroni 
correction for multiple comparisons, N=20) and suggestively 
significant if (0.0025<p<0.05). For quick visualisation on 
the plots, significant p-values (≤ 0.0025) will be additionally 
indicated by asterisks. Please note that p2 with asterisk 
corresponds to p ≤ 0.0025 (significant) whereas p2 without 
asterisk indicates p>0.0025 (suggestively significant).

c) Between-group age-related effect sizes using Cohen’s d [38] 
for each anatomically defined structure and for each DT/KT 
parameter before and after D-KIT correction. 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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The data before the D-KIT correction is the same as represented 
recently in the previous work [39].

Results 
Construction of the D-KIT for improved WM parameter 
mapping 

The goal of the D-KIT construction is to provide an improved 
template for DT/KT parameter mapping in WM using diffusion kurtosis 
information (ideally, the template voxels should represent single WM 
tissue). The construction of the D-KIT is based on the combination of 
two complimentary thresholds, FAthresh for FA and MKthresh for MK, i.e., 
a) FA>FAthresh (set to 0.2 in our work) and b) MK>MKthresh. 

A) Two-dimensional (2d) D-KIT. The determination of MKthresh 
constitutes the following steps depicted schematically in Figures 1A-1D 
for one selected slice in one representative adult (subject 1). Consider 
a typical slice histogram of the MK map, Figure 1A, showing a clear 
double-peak structure. The sum of 2 Gaussian distribution functions, 
Eq. (1), was fit to the data points. Such a double-peak histogram is 
characteristic for brain regions containing voxels in both WM and non-
WM regions [40]: the component with lower MK values is attributed 
(predominantly) to non-WM, the component with higher values 
(predominantly) to WM. However, the middle part of the histogram 
represents an overlap area where MK values are likely to represent 
either WM, non-WM, or their mixture. 

The red curve in Figure 1B shows separately the high-MK 
histogram component along with the data points from voxels for which 
FA>0.2. A good correspondence between the both is observed. The 
Gaussian shape of the MK distribution (red curve, Figures 1A and 1B) 
is beneficial for a formalised determination of MKthresh: we determine 
the low and high half-maximum (HM) values of the high-MK Gaussian 
component and set MKthresh to the value of MK at the low HM. This 
value will be denoted as MKLHM (where index L stands for low). Thus, 
the D-KIT is determined by selecting the voxels for which (a) FA>0.2 
and (b) MK>MKLHM. 

The condition (b) allows us to essentially reduce the number of 
voxels corresponding to the overlap area, see the “corrected” histogram 
component in Figure 1A, i.e., the part of the histogram right to the 
dashed red line. The result is demonstrated in the scatter plots of MK 
vs. FA (Figure 1C) and MD vs. FA (Figure 1D). The blue vertical lines 
in Figures 1C and 1D indicate the effect of FAthresh: data points to the 
left from the blue lines are eliminated by FAthresh prior to application of 
the condition (b). These data points refer to the voxels with relatively 
low MK and/or high MD characteristic of GM and/or CSF (with CSF 
exhibiting the lowest MK and the highest MD). However, a considerable 
amount of voxels with such characteristic exists also for FA>0.2. The 
application of the additional condition (b) allows one to exclude a 
significant amount of such voxels from the analysis: see data points in 
quadrant IV in Figure 1C and data points in blue in Figure 1D. The 
voxels that finally form the D-KIT correspond to the data points shown 
in the quadrant II of Figure 1C. In MD vs. FA plots, the corresponding 
data points are shown in red, Figure 1D. Clearly, the distribution of 
MD values corresponding to D-KIT is narrowed and the majority of 
points with high MD values (>1.5 μm2/ms) are excluded. Beyond that, 
the D-KIT eliminates also a certain amount of voxels with relatively low 
MD (<1.5 μm2/ms) in case they are accompanied by low MK (<MKLHM), 
see the MD histogram evaluated for excluded voxels in the incept of 
Figure 1D. These voxels are likely to be in GM.

The results for the 2d D-KIT are shown in Figure 2, see axial 
slice projections. Figure 2A exemplifies the D-KIT in yellow overlaid 
on the MD map. The difference mask (red) between the D-KIT and 
the conventional FA template (FA>0.2) is shown in Figure 2B. The 
difference mask thus visualises additional voxels excluded by the 
threshold MKLHM (condition (b)). To demonstrate localisation of these 
voxels, the bottom panel of Figure 2 shows the difference mask overlaid 
on MD (Figure 2C) and FA (Figure 2D) maps. Clearly, the majority of 
excluded voxels turns out to be located at the interfaces of WM and 
non-WM regions, i.e., at the borders with low FA and/or high MD. It 
is worth noting that the contours of excluded voxels tend to replicate 
not only the boundaries of the CSF spaces (appearing white in MD and 
black in FA maps) but also the boundaries between WM and GM, see 

Figure 1: (a) Typical histogram of the MK map (for one individual slice shown in the inset); the data points are fitted by a double-Gaussian function (dark blue curve); 
the light blue and red curves show the low- and high MK-components of the double-Gaussian function. (b) High-MK component; full width at half maximum is indicated; 
(c) scatter plot MK vs. FA; (d) scatter plot MD vs. FA. The inset shows the histogram of the excluded voxels. 
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zoomed areas in Figure 2A. The number of voxels eliminated by the 
condition (b) in the D-KIT equals 15.4% out of all voxels comprising 
the mask (FA>0.2) in the considered slice. 

B) Three-dimensional (3D) whole brain D-KIT. The threshold 
values, MKLHM, were determined separately for each slice and the 
individual 2D-slice templates were then combined in a 3D whole-brain 
D-KIT. To illustrate the result we provided two additional, sagittal and 
coronal, projections of the D-KIT and the difference mask in Figure 2. 
In agreement with the above 2D results, we see that eliminated voxels 
clearly outline the borders of the CSF ventricles (see for example, 
the contour curves along the corpus callosum) and some interfaces 
between WM and GM. The number of additional voxels eliminated 
in the whole-brain mask (FA>0.2) by the condition (b) in the D-KIT 
equals 14.5%. The 3D D-KIT can further be applied with all evaluated 
DT/KT whole-brain parameter maps. 

The value of MKLHM for different slices (excluding 6 outermost slices 
at the image top and 6 outermost slices at the image bottom) varied in the 
range between 0.7 and 0.86 with the average value of 0.76 ± 0.05. Certain 
variability of MKLHM across the brain can be explained by heterogeneity 
of WM microstructural properties. However, the magnitude of variability 
appears rather low: the coefficient of variation (CV), i.e., the standard 
deviation divided by the mean, was equal to 0.064. 

Application of the D-KIT in atlas-based comparison of 
children and adults 

The procedure described above was applied to construct the 3D 
D-KIT for anatomic WM ROIs identified by the JHU-WM atlas. The 
only difference in the procedure was that the determination of MKLHM 
was based on the histograms evaluated for individual anatomic ROIs 
rather than for individual slices. Scatter plots of MK vs. FA in (Figure 

3A) show examples of the data points excluded from the analysis 
(quadrants IV) by application of the D-KIT for 3 different fibres in 
subject 1. The results for other fibres were similar. We see also a clear 
similarity between the scatter plots shown for one individual slice in 
(Figure 1C), i.e., a considerable amount of data points exhibiting high 
FA and low MK subjected to exclusion by the D-KIT. 

Heterogeneity of the MKLHM values across the subjects is represented 
by bar charts in Figure 3B showing the means (<MKLHM>) and standard 
deviations (STD) of MKLHM averaged for each of the investigated fibres in 
the group of adults and the group of children. The mean values, (<MKLHM>), 
were considerably lower in children than in adults in all fibres complying 
with generally lower MK values in WM of children compared to adults 
[30]. Within the same group, the CVs across the subjects were low for most 
of the fibres varying in approximately the same range (from 0.042 to 0.088) 
with the means equal to 0.061 in adults and 0.062 in children. The values of 
<MKLHM> averaged over all fibres were equal to 0.78 ± 0.032 (CV=0.042) 
for adults and 0.61 ± 0.026 (CV=0.042) for children. Also here the CVs 
were low. That is, we see that, within the same group, the properties of MK 
histograms in the low-MK part are rather uniform both across the subjects 
and across the fibres. 

Figure 4 demonstrates how the mean parameter values in 20 
investigated fibres, averaged over each subject group, have changed after 
correction with the D-KIT. In adults: a) FA has significantly (p<0.0025) 
increased in all fibres with relative changes between 3 to 9%, b) MD has 
significantly decreased in 6 fibres (range, 4-9%) or showed non-significant 
changes in all other fibres, b) MK has significantly increased in 15 fibres 
with relative changes between 4 to 7% or showed suggestively significant 
(0.0025<p<0.05) increases in 4 fibres and non-significant changes in one 
fibre. A very similar pattern was observed in children. 

Figure 5 shows the results of the t-test between-group comparisons 

Figure 2: (a) D-KIT overlaid on the MD map; (b) D-KIT+excluded voxels (red) overlaid on the MD map; (c) excluded voxels (red) overlaid on the MD map; (d) excluded 
voxels (red) overlaid on the FA map. 



Citation: Grinberg F, Farrher E, Gao X, Konrad K, Neuner I, et al. (2017) Novel Diffusion-Kurtosis-Informed Template Reduces Distortions due to 
Partial Volume Effects and Improves Statistical between-Group Comparisons. J Alzheimers Dis Parkinsonism 7: 393. doi: 10.4172/2161-
0460.1000393

Page 5 of 11

Volume 7   Issue 6 • 1000393
J Alzheimers Dis Parkinsonism, an open access journal
ISSN:2161-0460

Figure 3: (a) Scatter plots of MK vs. FA show data points (quadrants IV) excluded from the analysis by application of the D-KIT for 3 different fibres in subject 1. (b) Bar 
charts show the means (<MKLHM>) and STDs of MKLHM averaged for each of the investigated fibres over the group of adults and the group of children. 

Figure 4: Relative changes of the mean parameter values for FA, MD and MK in 20 investigated fibres defined by the JHU atlas in adults and children after correction 
by the D-KIT: FA and MK significantly increased in all fibres in both of the groups. MD significantly decreased in several fibres in both of the groups, or showed non-
significant changes. The magnitude of changes was up to about ± 9%, depending on the anatomic region and parameter. Numbers attached to bar charts indicate 
statistical significance of two-sided Student’s t-test comparisons using the p-index (see Section Materials and Method). Letter p and index 0 are omitted. All significant 
comparisons (p<0.0025, corrected) are visualised by asterisks. 
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Figure 5: Bar charts represent between-group differences in percentage between the mean parameter values for various fibres before (ΔFA, ΔMD, ΔMK) and 
after (ΔFAcorr, ΔMDcorr, ΔMKcorr) correction with the D-KIT. In MK, the differences exhibited large magnitudes (10-25%) and were highly significant before and after 
correction. In MD and FA, we observed larger magnitude of differences and low p-values in several fibres after correction. Numbers attached to bar charts indicate 
statistical significance of two-sided Student’s t-test comparisons using the p-index (see Section Materials and Methods). Letter p and index 0 are omitted. All significant 
comparisons (p<0.0025, corrected) are visualised by asterisks. 
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before and after correction with the D-KIT in terms of the relative 
differences between the means (in percentage) and p-values. 
Additionally, Table 1 quantifies the effect size before and after correction 
in terms of absolute Cohen’s d values. The D-KIT correction has altered 
the observed between-group differences in the following way. 

DT metrics exhibited larger magnitudes of between-group 
differences accompanied with decreased p-values in several fibres after 
the D-KIT correction. For example, before correction, MD did not 
show significant between-group differences in any of the fibres (except 
for one suggestively significant difference in SLF_R). After correction, 
however, five fibres (ATR_L/ATR_R, CST_L/CST_R, Ch_R) exhibited 
significant decreases of MD from childhood to adult age and three fibres 
(Ch_L, F_major, F_minor) showed suggestively significant decreases. 
P-values decreased as well as demonstrated by higher p-indexes. Similar 
patterns were observed for AD and RD. FA showed significant increases 
from childhood to adult range in 4 fibres (ATR_L/ATR_R, Cg_L/
Cg_R) and suggestively significant increases in 6 fibres (Ch_R/Ch_L, 

ILF_L/ILF_R, SLF_L/SLF_R) after correction; p-values decreased. In 
contrast, no significant between-group differences were observed in 
FA before correction, although suggestively significant differences were 
still observed in 7 fibres (ATR_L/ATR_R, Cg_L/Cg_R, Ch_R/Ch_L, 
SLF_R). Cohen’s d value, Table 1, showed a clear tendency to increase 
after correction in most of the fibres and in most of the parameters 
excluding those in which the effect size was rather low both before and 
after correction. In particular, especially large improvements increasing 
the effect size from “low” (d<0.2) to “large” (d>0.8) were observed for 
all diffusivity parameters of ATR and CST fibres. 

KT metrics. In MK and similarly in other KT metrics, the relative 
differences exhibited large magnitudes (10-25%) and were highly 
significant (p ≤ 0.00001), whereas Cohen’s d values were very large 
(with the majority of values as large as exceeding 2.0) already before 
correction; these features remained robust also after correction with 
striking similarity of patterns across various fibres.

dFA dMD dAD dRD dMK dAK dRK dKA 
ATR_L 0.84 0.09 0.06 0.10 3.5 2.96 3.42 1.84

1.05 1.26 1.29 1.12 3.69 3.25 3.52 2.27
ATR_R 0.88 0.21 0.14 0.24 3.95 2.63 4.27 2.12

1.44 1.51 1.42 1.44 4.42 2.91 4.64 2.74
CST_L 0.04 0.53 1.19 0.03 3.16 2.40 2.89 2.03

0.24 2.17 2.76 1.25 2.92 2.60 2.54 2.10
CST_R 0.08 0.47 1.17 0.07 3.20 2.32 3.04 2.0

0.30 1.88 2.45 1.10 3.20 2.51 2.76 2.18
Cg_L 0.79 0.06 0.15 0.02 3.82 3.13 3.16 1.97

1.11 0.01 0.30 0.25 3.82 2.97 3.26 2.20
Cg_R 0.89 0.22 0.34 0.11 4.78 2.84 4.09 2.0

1.47 0.25 0.54 0.01 5.27 2.84 4.37 2.27
Ch_L 0.91 0.08 0.22 0.03 4.74 3.97 4.07 2.82

0.75 0.89 1.05 0.69 4.71 3.93 3.96 3.05
Ch_R 0.98 0.05 0.14 0.02 3.63 3.13 3.51 2.31

0.79 1.17 1.28 0.96 3.83 3.30 3.59 2.58
F_major 0.49 0.16 0.04 0.24 2.39 1.76 2.22 2.35

0.32 0.74 0.82 0.57 2.57 2.0 2.18 2.65
F_minor 0.30 0.08 0.40 0.14 2.68 2.46 2.57 0.28

0.30 0.80 1.17 0.49 2.84 2.79 2.59 0.55
IFOF_L 0.16 0.10 0.24 0.30 3.91 3.71 3.03 0.63

0.26 0.29 0.51 0.12 4.19 3.86 3.23 0.88
IFOF_R 0.14 0.19 0.10 0.37 3.80 2.81 3.65 0.81

0.13 0.41 0.78 0.12 3.92 2.95 3.71 0.99
ILF_L 0.49 0.15 0.27 0.07 4.14 3.59 3.38 1.32

0.79 0.53 0.52 0.50 4.42 3.70 3.60 1.51
ILF_R 0.54 0.20 0.33 0.10 3.74 2.94 3.66 0.98

1.03 0.47 0.44 0.46 4.04 2.97 3.98 1.25
SLF_L 0.48 0.51 0.45 0.53 4.31 3.33 3.72 1.02

0.87 0.23 0.25 0.21 4.57 3.45 3.97 1.25
SLF_R 0.76 0.83 0.86 0.77 3.75 2.86 3.30 0.88

0.90 0.54 0.59 0.48 3.88 2.92 3.44 1.03
UF_L 0.33 0.18 0.12 0.22 4.15 3.81 3.34 0.68

0.63 0.06 0.11 0.02 4.0 3.86 3.18 0.86
UF_R 0.16 0.04 0.2 0.06 3.48 2.85 3.26 0.91

0.55 0.13 0.13 0.12 3.53 3.02 3.20 1.06
SLF_temp_L 0.04 0.43 0.10 0.62 4.08 3.96 3.21 0.91

0.10 0.20 0.07 0.35 3.60 3.68 2.89 1.02
SLF_temp_R 0.24 0.25 0.52 0.05 3.37 3.05 2.83 0.68

0.43 0.71 1.28 0.16 2.85 2.96 2.19 0.58

Table 1: Absolute Cohen’s d values for various metrics before (upper row associated with each fibre) and after (lower row associated with each fibre) the D-KIT correction. 
The subscript of Cohen’s d indicates the parameter for which it was evaluated, i.e., dMK is Cohen’s d for MK, dFA is Cohen’s d for FA, and so on.
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Discussion and Conclusion
We developed a simple, robust D-KIT enabling us to significantly 

reduce PVE and demonstrated its performance in between-group 
comparisons of age-related differences of DT/DK metrics in atlas-
derived WM ROIs. Our results suggest that D-KIT corrected diffusion 
measures in WM regions reveal enhanced tissue specificity and enhance 
statistical significance (lower p-values) in between-group comparisons. 

The construction of the D-KIT is based on exploiting diffusion 
kurtosis properties of the brain tissue, in particular, the double-
peak bell-shaped distribution of kurtosis values. Technically, it uses 
a dual threshold combination of the typical FA constraint with an 
additional constraint on MK. FA constraints are routinely used for 
rough segmentation of WM and non-WM [27,41,42] making use 
of low anisotropy of GM and fluid. In particular, FA thresholds are 
used to constrain streamlines to WM regions in deterministic fibre 
tractography [43-45]. However, more accurate tissue segmentation 
as well as elimination of PVE in diffusion MRI images require an 
application of dedicated methods. 

The PVE reduction based on the D-KIT should be considered in 
the context of other approaches suggested in the literature. Most of 
efforts so far have been invested in the development of methods for CSF 
suppression related to DTI. Contamination by CSF represents a large 
source of errors in the analysis of diffusion metrics [46,47] giving rise to 
an overestimation of diffusivities and a reduction of FA values. The most 
eminent methods are represented by the DTI signal acquisition method 
combined with fluid attenuated inversion recovery (FLAIR) [48,49] 
and the free water elimination (FWE) method [50,51] accounting 
for mixed diffusion signal within a voxel. It was demonstrated that, 
in general, suppression of CSF contamination enhances the accuracy 
and reproducibility of DTI metrics and improves tractography results 
[48,49,52-54], especially in periventricular regions. The FWE correction 
was also applied to improve accuracy of DTI-derived metrics of limbic 
tracts in the study of their developmental trajectories [55]. 

Correcting for CSF contamination was shown to be of paramount 
importance for disentangling atrophy-based artefacts in ageing [54,56] 
and neurodegenerative pathologies, such as mild cognitive impairment 
[57], Huntington’s disease [52], or Alzheimer’s disease [58]. Accurate 
estimation of diffusion metrics can be especially important in elucidation 
of very early stages of Alzheimer’s disease. This is because, although 
traditional understanding of Alzheimer’s disease has been primarily 
associated with GM, the advent of DTI studies provided evidence for 
WM being also heavily affected (see [59] for a review). Moreover, the 
associated WM degeneration is now assumed to be an early pathological 
feature of Alzheimer’s pathogenesis occurring years or even decades 
before the onset of clinical symptoms [58]. Microstructural changes 
were found in many WM regions and individual tracts, such as UF, 
SLF, corpus callosum and fornix, predicting memory decline and 
progression from mild cognitive impairment to the Alzheimer’s disease 
[9,60-62]. Due to such studies, DTI is now emerging as potential 
tool to detect early microstructural WM changes in the Alzheimer’s 
disease. However, the underlying mechanisms (that can be secondary 
to GM pathology through Wallerian degeneration or due to processes 
originating directly in WM) are not yet fully clarified. Also, studies 
exploring correlations between DTI parameters and cognitive scores 
have reported some controversial results [63-66]. This might be both 
due to confounding factors in estimation of parameter values and since 
these parameters are influenced by many other non-specific biological 
variables. More recently, application of advanced diffusion models, 
such as DKI, have added new promising biomarkers sensitive to 

neurodegenerative WM alterations in the Alzheimer’s disease [67,68]. 
In this context, our simple method allowing one to reduce the influence 
of PVE on estimation of both DT and KT parameters can have value 
for developing techniques with enhanced sensitivity to detect early 
preclinical WM abnormalities associated with the Alzheimer’s disease. 

While usefulness of the CSF correction for more faithful 
characterisation of anatomic and microstructural tissue properties 
in development and pathology is undoubted, the practicability of the 
suggested methods often remains impeded by the lack of robustness, 
introduction of additional limitations and difficulties in adaptation to 
clinical applications. For example, FLAIR preparation in DTI prolongs 
the scanning time, reduces SNR and requires cardiac gating to avoid 
severe motion artefacts [69]. The FWE uses the voxel-by-voxel CSF 
correction with the help of the two-compartment (tissue+CSF) model 
fitting that can be applied both with single- and multi-shell diffusion 
weightings [50]. The advantage of the single-shell approach is that it 
can be applied as a post-processing step with data acquired by standard 
DTI protocols, i.e., without demanding additional acquisition time. 
However, this method requires introduction of local spatial constraints 
within a regularisation procedure in order to stabilise the (otherwise ill-
posed) fitting of the bi-tensor model. Multi-shell approaches allow one 
to avoid such constraints but require additional acquisition time [51]. 

In this context, it should be, first of all, noted that the D-KIT is 
developed for applications with non-Gaussian diffusion protocols, such 
as DKI, rather than with conventional DTI. It is applicable with any 
diffusion protocols that allow for evaluation of diffusion kurtosis at high 
b-values (>1.5 µm-2 ms). That is, it requires the same acquisition time 
as DKI (minimum of three b-value data points versus two in DTI) but 
does not introduce any additional difficulties, such as those by FLAIR. 
On the other hand, DKI is currently in the process of establishing itself 
as a routine method in clinical diffusion MRI, so that the corresponding 
protocols become ever more adapted to the clinical environment. 
Therefore, the use of the D-KIT can be expected to grow in parallel 
with the use of DKI and other non-Gaussian methods. Secondly, the 
D-KIT can be applied for post-hoc correction of already acquired DKI 
data. In this aspect it is analogous to FWE method that can be applied 
with already acquired, typically, single-shell DTI datasets. However, 
the D-KIT does not allow for estimations of additional voxel-based 
biomarkers since it works with MK distributions across the tissue. The 
FWE method, in contrast, allows one to map the relative free water 
fraction within a voxel as an additional contrast. A useful application of 
free water fraction mapping was demonstrated, for example, in studies 
of Parkinson’s disease [70-72]. Nevertheless, as a pure correction 
method, the D-KIT revealed itself as simple and robust in efficiently 
reducing PVE along the tissue borders without paying the penalty of 
potential errors introduced by (non-trivial) fitting and regularisation 
procedures. Such errors can be especially pronounced in the voxels 
with low SNR. With respect to FWE the D-KIT can be considered as 
a complimentary method that can be applied prior to FWE in order 
exclude strongly contaminated voxels from further analysis. 

An advantageous feature of the D-KIT for WM examination is 
that it acts not only upon the CSF but also upon GM contamination. 
Moreover, it will also automatically exclude the voxels in which high 
anisotropy accompanied by low MK is erroneously encountered due to 
noise (low SNR). The results of the fitting in the voxels retained by the 
D-KIT are not altered in comparison to uncorrected ones. However, 
improved estimations are achieved by excluding contaminated (“bad”) 
voxels from the statistical analysis, such as in the between-group 
comparisons demonstrated in this work. It is worth mentioning that, via 
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increasing the effect size of between-group differences, application of 
the D-KIT can also be useful for reducing the sample size requirements 
for a statistically powerful between-group comparisons [73]. This can 
be especially important in studies of rare diseases as well for the study of 
age-related physiological development. A huge cross sectional study in 
885 individuals ranging from 3-20 years identified the changes in white 
matter tracts likely related to increasing myelination from the ages of 
11-15 years as the strongest predictor for age [74]. 

The diffusion protocol applied in this work sets up relatively small 
isotropic voxel volume (1.93 mm3). In larger voxels of (2-3)3 mm3 more 
frequently used in DTI/DKI protocols, the D-KIT correction would be 
even more efficient since the PVEs are more pronounced in larger voxels 
[47]. The PVEs can generally depend also on the shape and topological 
properties of the WM bundles [27], such as bundle volume, orientation 
and curvature. Partial volume artefacts become especially critical for 
the estimation of diffusion metrics in neurodegenerative and ageing 
processes associated with tissue volume loss [56,75]. Tissue volume 
loss can modulate the PVE-related artefacts in diffusion analyses in 
a complex non-linear manner introducing confounding variables in 
between-group comparisons, tractography results and longitudinal 
studies. 

Our histogram-based analysis of the low MK thresholds revealed 
low variability across the subjects and across the fibre bundles. This 
empirical finding allows one to suggest a practicable simplification of the 
formalised approach of MKLHM determination developed in this work. 
Indeed, in the same way as experiential values between 0.15 to 0.25 are 
used for the FA threshold, values between 0.7 and 0.8 for MKLHM can be 
recommended for a simplified application of the D-KIT in the whole 
brain of the middle-aged adults. In children [76] and eventually, in very 
elderly adults [4], MK values may depend on the age more strongly, 
therefore, more differentiated approach would be required. Alternative 
approaches to determine optimal low MK threshold can involve using 
percentile analysis of MK histograms. Previously, percentile analyses 
of MD histograms, for example, have been successfully employed in 
assessment of brain tumours [77,78]. It remains to be investigated in 
future work whether a similar approach based on MK histograms can 
also provide more sensitive biomarkers.

In conclusion, using differences of diffusion-kurtosis histograms in 
different tissues we developed a simple robust template-based method 
to reduce contamination of WM structures of interest by PVE from 
neighbouring GM and CSF regions. Our work shows that excluding 
affected voxels from statistical analyses allows one to reduce confounding 
effects due to PVE and improves statistical results. The performance of 
the developed method was demonstrated in the semi-automatic atlas-
based comparison of two differently aged groups of healthy subjects. 
We showed that, after the D-KIT correction, the effect sizes of the 
between-group differences in many regional DTI/DKI metrics become 
larger whereas p-values of the t-tests decrease. The D-KIT is expected 
to be especially useful for detection of subtle between-group differences 
and longitudinal changes in studies of neurodegenerative pathologies 
and ageing associated with WM atrophy.
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