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Abstract

Infectious diseases form the major health-care burden for the developing world and antimicrobials prove to be the
magical drugs to combat this. The discovery of antimicrobial agents was boon for the global health-care system and
the wonderful cure by antimicrobials shifted the disease trends from infectious to life-style diseases in the developed
world. Sudden appearance of the antimicrobial resistance hampered the whole success; and this situation is further
complicated by the dry pipeline of antimicrobial development. Now, this is heading the world towards the “pre-
antibiotic” era. The development of new antimicrobials is not able to match pace with the speedily growing
antimicrobial resistance. Development of new active pharmaceutical principles is a difficult and costly practice. The
other approach to achieve the same is by rejuvenating the existing antimicrobials. These contemporary novel
approaches include bacteriophage therapy, fecal microbiota transplantation, antimicrobial peptides, combination
drug therapy and antimicrobial adjuvants to combat antimicrobial resistance forms the main stay of discussion of this
article.

Keywords: Antimicrobial resistance; Bacteriophage therapy; Fecal
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Introduction
Infectious diseases form the major health-care burden for the

developing world and antimicrobials proved to be the magical drugs to
combat this. The discovery of antimicrobial agents was boon for the
global health-care system. The wonderful cure by antimicrobials
shifted the disease trends from infectious to life-style diseases in the
developed world. But this magic didn’t last long due to appearance of
antimicrobial resistance, which is not a new phenomenon as thought
by many, but a natural evolutionary process which started even before
the development of antimicrobials due to ongoing continuous
mutations. Evidence of this can be found in studies that show that
resistance genes are prevalent in 30,000-year-old permafrost samples,
and in bacteria living in a cave, sealed from the surface 4 million years
ago [1,2]. Data from several developed nations has been submitted
with WHO but is still lacking from the South-East Asian Region
(SEAR-WHO) because of inadequate information of antimicrobial use
and poor surveillance monitoring agencies [3]. The recent trends in
development of antimicrobial resistance are more towards Gram
Negative bacteria, although significant resistance is seen with Gram
positive bacteria (MRSA, Clostridium difficle) also. Similar reports are
seen with Viruses (HIV), parasites (Plasmodium falciparum) and
several antifungals.

The main contributing factors for the development of resistance are
irrational antibiotic prescribing practices (misuse, overuse), easy
availability as non-prescription drugs in the developing world and lack
of regulatory policies concerning the use of antimicrobials in humans,
veterinary and agriculture. The time difference from manufacturing
and marketing of an antimicrobial to development of resistance is
decreasing significantly, driving away the pharmaceutical industry
from further research and development (Figure 1).

Resistance to single antimicrobial became prominent in organisms
that encountered the first commercially produced antibiotics. The most
notable example is resistance to penicillin among staphylococci,
specified by an enzyme (penicillinase) that degraded the antibiotic.
Over the years, continued selective pressure by different drugs has
resulted in organisms bearing additional kind of resistance
mechanisms that led to multidrug resistance (MDR). Some of the most
problematic MDR organisms that are encountered currently include
Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli
and Klebsiella pneumoniae bearing extended-spectrum β-lactamases
(ESBL), vancomycin-resistant enterococci (VRE), methicillin-resistant
Staphylococcus aureus (MRSA), vancomycin-resistant MRSA, and
extensively drug- resistant (XDR) Mycobacterium tuberculosis [4].

The recent spread of Gram-negative Enterobacteriaceae with
resistance to carbapenem due to New Delhi metallo-β-lactamase 1
(NDM-1) enzyme, a potential global threat, found among E.Coli and
Klebisella pneumonia (KPC, Klebsiella pneumonia carbapenamase) is
a matter of concern [5]. This conveys that we are near to the “pre-
antibiotoc” era as antibiotics of last resort are also not spared of
resistance.

Broadly, two approaches can be used to tackle this problem. Either
look out for new antimicrobials or work on the existing ones to make
them useful. Development of new active pharmaceutical principles is a
difficult and costly practice, and usually doesn’t have common financial
goals with pharmaceutical companies. The other approach to achieve
the same is by rejuvenating the existing antimicrobials, and this forms
the main stay of discussion of this review article

These contemporary novel approaches include:

a) Combination drug therapy

b) Bacteriophage therapy

c) Fecal microbiota transplantation

d) Antimicrobial adjuvants to combat antimicrobial resistance
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e) Antimicrobial peptides

Figure 1: The time difference from manufacturing and marketing of an antimicrobial to development of resistance is decreasing significantly,
driving away the pharmaceutical industry from further research and development

Combination Drug Therapy
In context of antimicrobials, this strategy is about treating the

infections with set of drugs rather than individual therapy
(monotherapy). This approach is currently being used in many drug
regimens where the causative organisms are more prone to develop
resistance (Mycobacterium tuberculosis, Human Immunodeficiency
Viral, Plasmodium parasitic infections). The principle to rationalize its
use is minimizing the probability of primary resistance to the
combination regimen by many folds. Let us consider that organism X
has primary resistance to drug A and B as 10-6 and 10-7 respectively. It
is provided that both drugs lack cross-resistance and does not interfere
with each other’s metabolism and pharmacokinetic properties. The
new possibility of primary resistance of organism X to drug
combination AB is 10-6 × 10-7=10-13 [6].

These combination drug regimens usually act by one of the three
ways:

a) Combination drugs acting on different targets in different
pathways.

b) Combination drugs acting on different targets in same pathway.

c) Combination drugs acting on single target, but in different
dimensions.

Combination drugs acting on different targets in different
pathways

Classical example is treatment modality used against
Mycobacterium tuberculosis infections currently prevalent in many
developing nations like India. Four first line drugs are used in this
regimen: Rifampicin(R), Isoniazid (H), Ethambutol (E) and
Pyrazinamide (Z). Their targets are: Rifampicin (RNA polymerase
inhibitor), Isoniazid (enoylreductase subunit of fatty acid synthase),
Ethambutol (an inhibitor of arabinosyl transferases involved in cell

wall biosynthesis) and Pyrazinamide (mechanism of action poorly
understood) [7,8]. Assuming that the bacterium got a chance to
develop resistance by changing one target, this combination regimen
will still be effective against at least other two pathways, minimizing
the chances of bacterial propagation.

Similar is the case with various other combination therapeutic
strategies such as Mycobacterium leprae infection, Human
Immunodeficiency Virus and Plasmodium falciparum malaria
treatment strategies. The efficacy of combination regimens is well
appreciated by policy makers and incorporated into several national
guidelines for treatment of infectious diseases.

Combination drugs acting on different targets in same pathways

Classical example using this strategy is combination of β-lactam
antibiotic (Amoxicillin) with β-lactamase enzyme inhibitor
(Clavulanic Acid) [9]. Many gram positive bacteria produces β-
lactamase enzyme which opens up the β- lactam, making it ineffective.
Adding β-lactamase enzyme inhibitor clavulanic acid degrades the
enzyme, permitting the drug to act on these organisms. Other
inhibitors include salbactum and tazobactum.

Combination drugs acting on single target, but in different
dimensions

Streptogramins, a class of newer generation antibiotics, is a mixture
of two active molecules. These two molecules – one a nonribosomal
peptide and the other a polypeptide-nonribosomal peptide hybrid –
bind in adjacent sites in the 50S subunit, near the peptidyl transferase
center [10,11]. They are 10-100-fold more potent as a combination
than either molecule, if used alone, as a single agent [12].

Bacteriophage therapy
Bacteriophage therapy, also known as phage therapy or viral phage

therapy is no less than a magical cure for many antimicrobial resistant
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infections. Bacteriophage is a virus that infects and replicates within a
bacterium. These are composed of proteins that encapsulate a DNA or
RNA genome and replicate within the bacterium following the
injection of their genome into its cytoplasm. This property can be used
to kill the bacteriophage occupied bacterial cells, forming the principle
of this therapy. Originally, developed by Frederick Twort and Felix
d'Hérelle in 1915 and 1917, phage therapy was immediately recognized
as an important tool for treating bacterial infections [13]. In 1896, the
British bacteriologist Ernest Hankin reported antibacterial activity
against Vibrio cholerae, which he observed in the Ganges and Jumna
rivers in India. He suggested that an unidentified substance was
responsible for this phenomenon and for limiting the spread of cholera
epidemics [14]. This unidentified substance is now recognized as
Bacteriophage. Much of the knowledge about this therapy remained
hidden from the world, possibly due to publishing of scientific
literature in non-english journals.

These bacteriophages have a high specificity in killing particular
bacteria, leaving the other useful bacteria unharmed. This property is
especially useful while killing the pathogens, without altering gut flora.
Antibiotics being non-specific in their action destroy commensals in
gut as commonly seen with fluoroquinolone, leading to super-
infections with Clostridium difficle [15].

There are several advantages seen with bacteriophage therapy over
antibiotics. Small doses of bacteriophages are required to treat bacterial
infections as they self-replicate in vivo. This also provides an additional
advantage of being less immunogenic as less dose of foreign substance
is administered in the body. The concept of sub-lethal dose, as seen
with antimicrobials holds no place in bacteriophage therapy as single
bacteriophage is sufficient to kill single bacterium. As phages also
continue to participate in evolution, they keep on adapting themselves
at-par with the mutational changes occurring in bacteria, leaving less
chances of development of resistant bacteria [16]. Bacteriophage
therapy also has high therapeutic index. Being specific to bacterial
species, development of cross-resistance is infrequent.

There are certain limitations to this therapy, not enough to limit
their applications. Being highly specific for bacteria, in case of mixed
bacterial infections (as commonly observed in clinical practice), we
will need cocktail of bacteriophages, prepared and stored with the
phage-banks. These bacteriophage cocktails are available at Tbilisi
Institute, Georgia, a pioneer institute in bacteriophage research. There
are other concerns like rapid clearance of bacteriophages from the
body, but this can be taken care of by altering bacteriophage structural
properties [17]. The negative public perception of viruses may also play
a role in the reluctance to embrace phage therapy [18].

Enzybiotics, an experimental antibiotic approach employing
enzymes to combat pathogenic bacterial infections, is also used for
isolating bacteriophage enzymes in their pure form and using them as
an independent therapeutic approach [19].

There are several regulatory issues regarding the implementation of
this therapy. The need for phage-bank makes the regulatory testing
more hard and expensive. There is a problem regarding approval of
usage of phage therapy for humans in western world, mainly due to
difficulty in establishing safety with self-replicating entity. But in 2006,
US FDA has approved it for its use as a food additive targeted against
Listeria Monocytogenes as a spraying agent for meat. This suggests that
phage-therapy can also get approval for human use but there are
several patent concerns regarding this which leads to difficulty in
distribution of rights to various pharmaceutical companies. There is an

ample scope in this field to overcome antibiotic resistance but further
scientific research is needed to establish the safety and effectiveness.

Fecal Microbiota Transplantation
Fecal Micro biota Transplantation (FMT), also known as fecal

bacteriotherapy or stool transplantation is a promising approach
recognized recently. This process involves the transplantation of feces
from a healthy donor to a recipient [20]. The active principle of this
therapy aims at the total restoration of the gut commensals by infusion
of the stools from healthy donor using various methods including
enema, nasogastric, nasoduodenal and colonoscopic routes.
Clostridium difficle infection (CDI) is the leading cause of antibiotic
and health care-related diarrhea [21]. The first description of FMT was
published in 1958 by Ben Eiseman and colleagues, who treated four
cases of critically ill patients with fulminant pseudomemberanous
colitis using fecal enemas [22].

Antibiotic targets being non-specific, kills both the pathogenic as
well as gut flora. Antimicrobial action on gut flora kills all the
organisms leaving behind few resistant strains of Clostridium difficle
bacteria. These strains grow unchecked, which are refractory to most
commonly used antimicrobials leading to pseudomemberanous colitis.
This therapy transplants gut flora (from healthy donor’s feces) and
restores it in the recipient colon, displacing the selective growth of
virulent strains of Clostridium difficle bacteria, decreasing their
number ultimately breaking the cycle of recurrent CDI. This minimizes
repeated antibiotic use, which in turn reduces the risk of antibiotic
associated resistance.

Fluoroquinolones are the most common antibiotics leading to this
condition, clindamycin and β- lactam antibiotics are also the
contributing agents. Current guidelines from the Infectious Disease
Society of America focus on vancomycin and metronidazole based
regimens, but therapeutic effects are limited by high recurrence rates
because of development of resistance [21]. Search for newer
therapeutic options is the need of the hour. In the last few years, this
therapy has interested many researchers. A review article in 2011
found 22 reports of FMT, they included 239 patients. Resolution of
symptoms was successful in 87% (145/166) of the patients described to
have fulminant or refractory CDI [23]. In 2010 and 2011, 11 studies
and case reports were done in different centers; the success rate of
FMT was very high approaching 92% [24].

A randomized study published in the New England Medical Journal
in January 2013 reported a 94% cure rate of pseudomemberanous
colitis caused by Clostridium difficle, by administering fecal
microbiota transplant compared to just 31% with Vancomycin. The
study was stopped prematurely as it was considered unethical not to
offer the FMT to all participants of the study due to the outstanding
results [25,26]. In 2012, a team of researchers at Massachusetts
Institute of Technology (MIT) founded OpenBiome, the first public
stool bank in the US.

There are several regulatory and ethical issues regarding the safety
and efficacy of this therapy. Further research and clinical trials are
needed, and more data is required for its approval by US-FDA. This
therapy is a new hope to save the humanity from menace of
antimicrobial resistance.
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Antimicrobial Adjuvants
The discovery of new and effective antimicrobials is the ideal

approach to combat the issue of antimicrobial resistance. It seems a fair
solution for the deficiencies in the existing antimicrobials for
resistance-development point of view. But the development and
marketing approval of these drugs by US-FDA had not matched the
pace of development of antimicrobial resistance. So, the best practical
strategy is to modify the existing drugs to make them more useful and
potentiate their effectiveness, and this process is more economical.
[27,28]. Using antimicrobial adjuvants is such an approach that aims to
improve the efficacy of existing antibiotics and for suppressing the
emergence of resistant strains. These are the compounds that make
bacteria more susceptible to antibiotics [29]. Screening of molecules
acting as antibiotic adjuvants has attracted many researchers. These
compounds typically don’t possess any intrinsic antimicrobial activity,
but those with such an activity can also be considered as adjuvants. The
latter case can be justified as usage of two synergistically acting
antimicrobials is also considered as adjuvants. Adjuvants acts by
reversing the mechanisms adopted by microbes to develop
antimicrobial resistance. The generic mechanisms of actions of
adjuvants act includes:

Inhibition of antimicrobial resistance elements: Classical example
includes addition of β-lactamase inhibitor to a β-lactam antibiotic,
thus preventing the distortion of the β-lactam ring and maintaining its
efficacy against gram-positive bacteria. Another notable example
includes addition of Cilastatin, dehydropeptidase, an enzyme that
degrades the β-lactam Imipenam. These adjuvants supplement the
actions of these compounds.

Enhancing the uptake of antimicrobial in target cell: Colistin
(Polymyxin B), a poly-cationic molecule with both lipophilic and
hydrophilic ends, is an antibiotic whose use itself is limited due to
nephrotoxicity. But its action as a membrane detergent can be used as
an adjuvant principle in low doses. This limits the toxicity, and
facilitates penetration of concurrently administered hydrophilic
antibiotics such as rifampicin, carbapenams, glycopeptides and
tetracyclines [30]. This principle can be further exploited to target
lipopolysacchride layer of gram-negative bacteria.

Nullifying the effect of efflux pumps: The main mechanism for
development of resistance to tetracyclines in by its expulsion from
bacterial cells by efflux pumps [31]. The approach to achieve this effect
is by co-administering structurally similar compound which can
compete with tetracycline for efflux pumps, minimizing the efflux of
tetracyclines. Hence, bringing down the development of resistance
[32]. This same mechanism can be used even for quinolones and
aminoglycosides.

Disruption of biofilm: Bacteria form sessile communities called
biofilms as a protective screen to antimicrobials. Bacillus subtilis
produces a factor, which prevents biofilm formation and disassembles
the existing ones [33]. This factor was later recognized as a mixture of
D-amino acids. This can be used for combating antimicrobial
resistance in clinical practice by co-administering D-amino acids with
broad- spectrum antibiotics for biofilm dispersion, regaining the
sensitivity.

By promoting bacterial oxidative stress: Tellurium oxyanion tellurite
(tellurite) is known to cause high levels of oxidative stress in bacterial
cells. Antibiotics acting by interfering with cell wall (ampicillin,
cefotaxime) or protein synthesis (tetracycline, chloramphenicol,
gentamicin), when used with sub-lethal concentrations of tellurite,

their killing action is potentiated many folds. The possible mechanisms
other than Reactive oxygen species generation [34], are damage to
metabolic enzymes [35,36], glutathione depletion [37] or lipid
peroxidation [38].

Antimicrobial Peptides
Antimicrobial peptides, also known as host-defense peptides are

part of the innate immune response found among many organisms.
They present significant antibacterial, antifungal, antiparasitic, and
antiviral activity [39]. Usually these molecules are composed of 10-50
amino-acid residues, and arranged in different groups depending on
the amino-acid composition, size, and conformation [40,41]. These
protein molecules have weak intrinsic antimicrobial activity but potent
and broad immune modulatory activity when the host cells are
invaded by bacteria or viruses and this demonstrate their potential as
novel antimicrobial agents. They have very specific properties
including their amphipathic secondary structure, small size, positively
charged and bind rapidly to the biological membranes [42,43]. These
are very fast in killing microbes, a property that doesn’t allow
development of resistance against these compounds, although few case
of resistance has been documented. This represents a class with broad
spectrum activity against bacteria (both gram positive and negative),
mycobacterial (including Mycobacterium tuberculosis), enveloped
viruses, fungi and even transformed or cancerous cells [44].

Antimicrobal peptides are produced by all known species, including
peptides from bacteria, from fungi, from hydra, insects (mastoparan,
poneratoxin, cecropin, moricin, melittin and others), [45] frogs
(magainin, dermaseptin and others), [46] and mammals (for example,
cathelicidins, defensins and protegrins).

The mode of action of antimicrobial peptides is not very clear, but
they mainly act by targeting either cell membrane/cell wall or intra-
cytoplasmic molecules. Additionally, they also act by neutralizing
lipopolysacchride, prevent immune mediated response and further
development of septic shock [47].

Antimicrobial peptides act by multiple modalities. These includes
[48]:

a) Lipopolysacchride neutralization or disaggregation

b) Induction of membrane permeability

c) Inhibition of cytoplasmic proteins related to cell division or
survival

d) Inhibition of macromolecular synthesis through interaction with
nucleic acids

e) Anti-biofilm Activity of antimicrobial peptides against biofilm of
multi-drug resistant bacteria.

They act synergistically with currently available conventional
antibiotics by enhancing permeability of antimicrobials by their
membranolytic effect, reducing dose and thus toxicity. This strategy is
presently in infancy stages, more studies are needed to validate them
for their usage in clinical practice. These can be newer generation
antimicrobials for combating multi-drug resistant microbes and
preventing biofilm production.

Conclusion
It is worth mentioning that rational use of antibiotics enjoys its own

place, as this brings down the burden of rapidly developing
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antimicrobial resistance. To conclude, we feel that rejuvenating the
already existing antimicrobials is more practical and better approach
than to look for newer molecules from the beginning. The various
modalities listed above seem to be quite promising, although more
research into these is need of the hour. The combination therapy helps
in overcoming the vulnerabilities of the existing antimicrobials by
supplementing them with the missing links in their natural lytic
pathway. Bacteriophage therapy is confined only to certain parts of the
globe, this need to be highlighted to the entire scientific community for
better understanding and newer applications. Fecal microbiota
transplantation is a recently employed approach promoting the growth
of commensals to outnumber the pathogenic resistant bacteria. Certain
newer potential application to this approach is under research.
Antibiotic adjuvants act like combination therapy, but they target more
metabolic and other pathways vital in the survival of microbes and
works by boosting the action of antimicrobials, even for the molecules
with zero intrinsic antimicrobial activity. Antimicrobial peptides are
ultra-fast acting broad spectrum proteins which mimic the natural
innate immune system for clearing microbes. This class of proteins is
expanding with the newer research. These modalities form the hope for
the future to curb the development of antimicrobial resistance.
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