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Abstract

CO2 storage in deep saline aquifer is still at its infancy and not yet matured for large scale industrial development
due to the considerable uncertainties that still exist regarding storage capacity and safety. At the same time,
because this is an expensive process, so engineers wish to store as much CO2 as possible within a particular saline
formation. However, injecting huge amounts of CO2 into the particular saline formation pose significant technical
issue such as pressure build-up and CO2 leakage. Therefore, in order to fully exploit it is potential, optimum injection
strategies need to be investigated. In this paper we examine a realistic model of deep saline aquifer and conduct
optimization study on some simulation parameters by applying multi-objective particle swarm optimization algorithm
(MOPSO) to Enhance CO2 storage capacity and safety by, 1) Maximize total injected CO2, 2) Minimize pressure
build-up in the center of the field and 3) Minimize CO2 leakage at the edges of the aquifer.

The result of this study shows that when changing the number of wells from 5 to 7 injectors the possible storage
capacity for dome A is increased by 4%. However, the maximum CO2 leakage did not reach the criterion of 0.1%/
year. The results also indicate that the MOPSO algorithm is promising in obtaining the desired objective to improve
storage capacity significantly while reducing the pressure build-up and CO2 migration.
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Introduction
As the level of CO2 rise every year, it is necessary to find a solution

to this problem. Carbone capture and storage (CCS) is considered to
be an important means of reducing the levels of CO2 in the atmosphere
[1]. CO2 might be stored in an oil and gas reservoir, unmineable coal
seam and deep saline aquifers [2,3]. Among these options, deep saline
aquifers seem to be the most promising site for CO2 storage, because
they can potentially provide a large storage and they are widely spread
throughout the world. Despite experimental and commercial analysis
shows the technological and economic feasibility of CO2 storage in
saline aquifers. However, the detailed processes for storing CO2 in
deep saline aquifers are not very well understood. Consequently, there
remain many uncertainties in determining the CO2 storage efficiency
and safety of CO2 storage due to relatively high risk of leakage. These
uncertainties result in insufficient and inaccurate data about the detail
interior geometry, aquifer size and structure and/or improper injection
strategy such as well location, well completion, injection pressure, type
of injection wells and injection rate. The optimization of the injection
strategy in deep saline aquifers is of great interest in carbon capture
and storage project [4]. Therefore, a simulation tool that has a
capability of determining the optimal solutions by balancing various
trade-offs among desired objectives in in CCS is needed. In this work,
Bunter sandstone formation model from ETI UK SAP was used as a
typical saline aquifer and simulations have properly been carried out
on one sector of the model (Dome A). Then, multi-objective particle
swarm optimization algorithm has been applied using Raven software
for the optimization of well location, injection rate and well
completion. This algorithm was used previously in many other

application areas, but it does not appear to have been applied for
optimization injection strategy in CCS project.

The reminder of this project is organized as follows. The concept of
particle swarm optimization algorithm is present in section two. Model
overview, numerical simulation and preparing an optimization model
in Raven are present in section three. In section four discuss and
summarize the main results that are obtained from this optimization
study. Finally, draw some conclusions and recommendations in section
five.

Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) belongs to a class of

optimization algorithm techniques which is developed by Kennedy
and Eberhart in 1995. PSO is a swarm intelligent approach that can be
used for searching a problem in a problem space in order to identify
the parameter values which lead to minimize or maximize a function
called objective function [5]. Objective function is a mathematical
expression describing a relationship of the optimization parameters or
the result of an operation (e.g. simulation) which is used the
optimization parameters as an inputs.

In Particle swarm optimization the particles are located in the
parameter space of particular problem or function, and each particle
evaluate the objective function at it is current place. Then, the particle
looking for better solution in the parameter space by integrate some
feature of it is own current and best location (best-fitness) with one or
more particles of the swarm. The next iteration occurs after all particles
were moved like a flock of birds foraging for food. A near optimum
fitness location can be achieved with this iteration [6].

In the PSO each particle has three D-dimension vectors, where D
refers to dimensionality of parameter space. These dimensions are;
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velocity of particles (Vi) current location of particles (Xi), and previous
location of particles (Pi). Current location (Xi) is considered as a point
in problem space. On each algorithm iteration, current location has
been evaluated as a problem solution. In the case if that location is
better than all the available solutions. Therefore, the coordinates have
been stored in the previous location (Pi). This value called Pbest and
used for comparison in the next iteration and because the objective
continuously search to find better location, so that Pi and Pbest are
updated by adding a new coordinate from Vi to Xi based on the
equation 1 and 2. There is another best value which has been tracked
by global version of PSO. This value is the overall best value and best
location which is obtained by individual in the population so far. The
value called Gbest.

Multi-objective particle swarm optimization
In the single objective particle swarm optimization the main goal is

to optimize a single objective function and determine the overall
optimum value for that objective. However, the definition of multi-
objective particle swarm optimization is more complex. In MOPSO the
main purpose is to determine a trade-offs solution which is
representing the best possible compromises among the various
objectives, this is called Pareto front [5]. Pareto front can be defined as
a best possible solution. In other words, Pareto front is a set. This
contains all the objective vectors relating to the parameter vectors that
have not been dominated by any other parameter vectors [7]. However,
when the parameter vectors dominated by another one this parameter
vector is called remainder Figure 1A shows the Pareto front for two
objectives maximization problems and Figure 1B shows the Pareto
front for two objective minimization problems. The possible solutions
which optimize f1 and f2 are also demonstrated in the Figure 1.

Reservoir Description Model
Bunter sandstone formation model from ETI UK SAP has been

used as a typical saline aquifer for CO2 injection simulations. The
structure of Bunter sandstone contains four domes (A, B, C, D) as
shown in Figure 2 and most of these domes have been filled with saline
water. Bunter model consist of five layers with alternating high and low
porosity and permeability. The initial properties of Bunter formation
which are used in geological model are summarized in Table 1. The
detailed model of reservoir properties and characteristics of the
formation are provided in Williams et al. [8].

Figure 1: Illustrate the Pareto front set for multi-objective function
[7].

Figure 2: Prospective view of the static model.

Properties Unite Value

Bunter formation thickness Meter 225

Permeability sandstone mD 0.001-15000

Porosity sandstone % 5-35

Permeability shale layer mD 6.5 × 10-3

Porosity shale layer % 3

Rock compressibility 1/MPa 5.5675 × 10-4

Temperature gradient C˚/km 36.5

Table 1: Properties of Bunter formation used in the model.

Numerical simulations
Three dimensional simulations were performed using ECLIPSE 300

compositional software with CO2 STORE option that can be used to
calculate mutual solubility of CO2 and brine. Bunter Model initially
has a total of 110 × 63 × 65 grid blocks. Each grid measures 400 m ×
400 m in X and Y directions with an average thickness of 3.9 m, the
thinnest cell in the model has 0.56 m thickness. For simplicity and
because of time constraint this project considered one sector of the
Bunter Model (Dome A) with total of 32 × 29 × 54 grid blocks in X, Y,
Z directions respectively.

For simulation input data, Viking 2 relative permeability data were
used for sandstone which have been taken from SPE paper (No. 99326)
published by Bennion et al. and Calmar were used for shale formation,
the data have been obtained from Alberta geological survey website
(AGS). The data are shown in Tables 2 and 3. In addition, because
there is no specific value for fracture gradient, the fracture pressure of
0.018 Mpa/m was chosen from paper published by William et al. [8]
and this vale will be used as criterion for maximum allowable pressure
in injector and observation wells.

This study considered two cases. Case one has five injectors with
one observation well while case two has seven injectors and one
observation well. Initially in both cases all the wells are vertical and
located around the crest of the dome A. The injector wells complete
across top to the bottom aquifer and controlled by rate. However, an
observation well was completed within the top three layers of the
aquifer in order to monitoring pressure at the top of aquifer and
minimizing the risk of formation breakdown.
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Water Saturation
Fraction

CO2 Saturation
Fraction

Krg Krw

1.0000 0.000 0.0000 1.0000

0.9710 0.029 0.0002 0.9150

0.9420 0.058 0.0006 0.8332

0.9130 0.087 0.0015 0.7546

0.8850 0.115 0.0031 0.6794

0.8560 0.144 0.0055 0.6076

0.8270 0.173 0.0090 0.5392

0.7980 0.202 0.0138 0.4743

0.7690 0.231 0.0199 0.4130

0.7400 0.260 0.0276 0.3553

0.7110 0.289 0.0370 0.3014

0.6830 0.317 0.0484 0.2512

0.6540 0.346 0.0619 0.2050

0.6250 0.375 0.0776 0.1628

0.5960 0.404 0.0957 0.1248

0.5670 0.433 0.1163 0.0912

0.5380 0.462 0.1398 0.0622

0.5100 0.490 0.1660 0.0380

0.4810 0.519 0.1954 0.0190

0.4520 0.548 0.2279 0.0059

0.4230 0.577 0.2638 0.0000

Viking 2 Drainage data for sandstone

Table 2: Relative permeability data model for sandstone formations.

In the simulation model, Dome A was divided into two regions to
monitoring CO2 migration out of the dome properly. It was assumed
that pure CO2 is injected into the aquifer and injection carried out for
14 years. As this study considered optimizations rather than the
process occur during and after injection. Therefore, it was made some
assumption to simplify the model and get shorter simulation running
time. The main assumption can be summarized as the follows:

1. There are only three components in the simulation model
namely; CO2, H2O and NaCl

2. Assume CO2 is the non-wetting face and ignore the effect of
hysteresis by removing the keyword Hysteresis and imbibition
data in the eclipse simulation

3. Because CO2 inject for 14 years so that, the mineral trapping
mechanism has been ignored

4. Ignored solid precipitation

Preparing an optimization model in raven
The aim of the optimization process is to determine the parameter

values that lead to a maximum or minimum of the objective function

(e.g. maximum CO2 storage and minimum leakage). Therefore, before
setting up the model in Raven it is important to identify the
parameters that would be changed and define the range of
distributions for each parameter. In this project among the relavant
parameters that affect storage capacity, it was decided to change three
parameters involving injection rate, well location for injector wells, and
well completion. Table 4 illustrates the tuning parameters and their
values that were used in the Raven software. Both cases start with 20
particles in the parameter space and run Raven for 350 iterations.

Water Saturation
Fraction

CO2 Saturation
Fraction

Krg Krw

1.0000 0.000 0.0000 1.0000

0.9820 0.018 0.0039 0.8803

0.9640 0.036 0.0095 0.7697

0.9460 0.054 0.0160 0.6679

0.9270 0.073 0.0232 0.5747

0.9090 0.091 0.0310 0.4897

0.8910 0.109 0.0393 0.4128

0.8730 0.127 0.0480 0.3437

0.8550 0.145 0.0570 0.2820

0.8370 0.163 0.0664 0.2276

0.8190 0.181 0.0762 0.1800

0.8010 0.199 0.0862 0.1390

0.7830 0.217 0.0965 0.1042

0.7640 0.236 0.1070 0.0752

0.7460 0.254 0.1178 0.0518

0.7280 0.272 0.1288 0.0334

0.7100 0.290 0.1401 0.0197

0.6920 0.308 0.1515 0.0101

0.6740 0.326 0.1632 0.0041

0.6560 0.344 0.1751 0.0010

0.6380 0.362 0.1871 0.0000

Calmar Drainage data for shale

Table 3: Relative permeability data model for shale formations.

Results and Discussion

Case one
Case one has five injectors and one observation well at the crest. The

ranges of parameters distribution are shown in Table 3. As mentioned
earlier in the single objective optimization the best solution is only one
which gives minimum or maximum value of the objective. On the
other hand, in the multi-objective optimization there is a set of
possible solutions which is called pareto front and we are interested in
determining a good compromises among the objectives that we wish to
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optimise. Pareto front has many advantages. For instance, it allows to
decision maker (DM) to make a proper decision by noticing a wider
range of solutions. From engineering point of view pareto front can
also be useful because it gives a better understanding of overall system

where all the consequences of a decision with respect to all objective
functions can be explored.

Case one

Parameters Well name Range

Injection rate (sm3/day/well) From I1 to I5 2. × 106 – 2.912 × 106

Well location in X direction I1 76-79

I2 80-94

I3 65-75

I4 76-94

I5 65-75

Well location in Y direction I1 29-40

I2 26-40

I3 22-40

I4 14-25

I5 14-21

Well completion From I1 to I5 20-53

Case two

Parameters Well name Range

Injection rate (sm3/day/well) From I1 to I7 2 × 106 - 2.912 × 106

Well location in X direction I1 65-77

I2 78-81

I3 81-94

I4 78-80

I5 65-77

I6 81-94

I7 65-77

Well location in Y direction I1 25-27

I2 29-40

I3 14-26

I4 14-25

I5 28-40

I6 28-40

I7 14-24

Well completion From I1 to I7 20-53

Table 4: The ranges of parameters for case one and case two. X and Y location are given in term of grid cell number in the X and Y direction and
well completion in Z direction.
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Figure 3 illustrate the pareto front for two objective problems; total
amount of CO2 stored in Dome A (RGIP) and total CO2 leakage
throughout Dome A (RKFR). It can be clearely seen in the trend as it
moves from bottom left corner to the top right corner. This trend
results from the objective function, because the objective on Y-axis is
minimised and the objective on X- axis is maximised. After 352
iterations in total, fifty seven solutions for these two problems have
been created as shown in blue points on Figure 3. Among these
possible soutions moving from one point to another causes
enhancment in one objective while the other becomes worse. In other
words, each blue point which represents the possible solutions on
pareto front plot is not enhanced without sacrificing performance on st
leasr one other objective. For example, If the solution of the points
marked (A) and (B) on the Figure 3 are compared it is clear that
solution A and B are not equal for objectives RGIP and RKFR. Solution
A is better for objective RKFR because it provides low leakage (3.0
sm3) compared to RKFR value in solution B which is about 14289 sm3.
However, solution B is preferred over solution A for objective RGIP
because it gives higher RGIP (7.1 × 1010 sm3). Similar comparison can
be made for any other solutions.

Figure 3: Illustrate the Pareto front for objectives RGIP and RKFR
in case one.

In Figure 4 it is interesting to note that the injectors (black circles)
are not located around the crest as it is expected. In addition, despite
that the injection rate per well in both cases are approximately the
same (Table 5), the total CO2 storage in solution B is increased by
factor 2.3 compared to solution A. There are two possible reasons for
this, first it may be due to the problem of pressure build up in solution
A as can be observed from Figure 4. The Injector wells are placed close
to each other and because these wells are operated at BHP of 210 bar, a
small amount of CO2 have been injected. Consequently, a small
amount of CO2 migrates throughout the dome A (Table 5). The second
reason is that, it could be due to the effect of permeability because
Bunter formations are very heterogeneous [8].

When several possible solutions are available, it becomes difficult to
make the appropriate or best decision without having proper
information and some engineering criterion. With regard to CO2
leakage, the research carried out by Zwaan et al. [9] confirmed that the
acceptable leakage rate is about 0.1%/year and if the leakage rate high
than this value it does not consider as a mitigation option. Therefore, it
was assumed that the criterion of 0.1% is the maximum allowable
leakage throughout dome A.

Parameters Well name Value

Solution A Solution B

Injection rate (sm3/day/
well)

I1 2093721 2056742

I2 2362111 2344729

I3 2115028 2267649

I4 2369112 2356712

I5 2296472 2115469

Well location in X
direction

I1 71 80

I2 78 83

I3 82 86

I4 72 75

I5 75 75

Well location in Y
direction

I1 21 25

I2 29 28

I3 26 22

I4 23 23

I5 30 28

Well completion I1 28 34

I2 25 27

I3 30 51

I4 25 44

I5 27 32

Table 5: The parameters value for solution A and B in case one.

Figure 5 is the plot between total amount of CO2 stored in dome A
vs total CO2 leakage during 14 years of injection for the above fifty
seven solutions (Figure 4). Although there are different values for
leakage, these values never exceeded 0.1% which was set as a
constrained for maximum leakage in dome A. The maximum value for
CO2 leakage is 0.00203%.

Pressure build-up was also considered in case one. Figure 6 shows
the plot of total amount of CO2 stored (RGIP) against well bottomhole
pressure in observation well (WBHP: P1). The goal here is to maximize
storage capacity and minimize pressure build up. As depicted in Figure
6 the solutions (blue points) are widely spread because in objective
WBHP the optimizer tend to determine the smallest value, but due to
conflicting objectives of RGIP and WBHP there are a continuous
spread of the results for all subsequent iterations. Also 350 iterations
may not be enough to see convergence, because study on MOPSO
performance indicates that the objective function at early stage of
evaluation is decreased while flattened later on. Thus, if the number of
iterations increases, the front is clearly seen as a line at shallower right
corner. Generally one of the purposes of optimization injection design
is to ensure that the pressure never exceeds the fracture pressure of the
aquifers. Considering that the fracture pressure of Bunter sandstone is
0.018 Mpa/m, 200 bars was set as the maximum bottomhole pressure
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in well P1. After 352 iterations and among fifty seven solutions only
one solution which is highlighted in green has reached the criterion,
but the rest are below the maximum pressure limit. This is shown in
Figure 6.

Figure 4: Well location distributions in dome A for solutions A and
B.

Figure 5: Plot total amount of CO2 stored in dome A vs. CO2
leakage.

Figure 6: Plot of total CO2 stored vs. well bottomhole pressure in
observation well.

In Figure 7 the objective problems of well bottom-hole pressure for
observation well and CO2 leakage are compared and since the
objectives are minimized the trend moves from right to the left. For
this case let’s compare solutions of point C and D as shown on Figure
6. Despite both solutions C and D in Pareto dominance condition are
true, point C is better for both objectives than D, because it records the
minimum value for both objectives. Therefore, it can be said that
solution C dominates solution D. In other words, solution C is not
worse than solution D for both objectives or solution C is better than
solution D for at least one objective.

Case two
Case two has seven injector wells with one observation well. Similar

to case one three parameters have been changed and the range of these

parameters are illustrate in Table 4. After initializing Bunter model,
352 iterations in total were launched and fifty seven solutions have
been generated. Figure 8 once again shows the plot for objectives of the
total CO2 storage and total CO2 leakage rate. In contrast to case one
the Pareto front (blue points) in case two as shown in Figure 8 are
more scattered and it has no clear convergence trend as a line, but the
front can be observed. However, because case two has two more
injectors it provides more CO2 stored in Dome A for the same period
of injection (14 years) compared to case one. The maximum CO2
storage for case two which has been marked (E) on Figure 8 is 3.1 ×
109 sm3 higher than case one. At the same time, it also gives higher
CO2 leakage (1.3 × 105 sm3) compared to case one which is about 1117
sm3.

Figure 7: Plot of CO2 leakage vs Bottom-hole pressure for
observation well.

Figure 8: Illustrate the Pareto front for objectives RGIP and RKFR
in case two.

Figure 9 shows the CO2 migration throughout Dome A in
percentage for above fifty seven solutions vs. total CO2 storage. In
Figure 9, maximum CO2 leakage is about 0.032% and this value is
0.0299% higher than the maximum value in case one (0.00203%).
Looking into the well distribution in Figure 10 it is realized that the
relatively large amount of CO2 leakage in case two compared to case
one result in the well locations since some injectors (black circles)
being closer to the boundary. Despite the fact that the total CO2
storage and total CO2 leakage in case two is higher than case one,
interestingly, case two is still under the leakage constraint (0.1%/year).
Thus, to find the maximum safe volume of CO2, extended injection
period are required.

A look at Figure 11 reveals that MOPSO algorithm provides a closer
front of solutions toward right corner of the plot. This result indicates
an improvement in Pareto front for well bottomhole pressure
compared to case one where the front widely spread. Again even with
injecting more CO2 in case two, it can be seen from Figure 11 that
WBHP is still lower than the maximum pressure limit (200 bar).
Finally, Figure 12 shows two minimize objectives WBHP and RKFR.
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On the contrary to case one (Figure 7), a strong trend towards better
quality value in both objectives is evident.

Figure 9: Total amount of CO2 stored vs CO2 leakage.

Figure 10: Well location distributions in dome A for solution E (case
two).

Figure 11: Plot of total CO2 stored vs well bottomhole pressure in
observation well.

Figure 12: Plot of CO2 leakage vs Bottom-hole pressure for
observation well.

Concluding Remarks
In this project the optimization of CO2 storage in one sector of

Bunter Model (Dome A) has been investigated by applying MOPSO
algorithm with the objectives of maximizing CO2 storage, minimizing
pressure build-up and CO2 leakage. The following are the conclusions
derived from this study:

• This study shows that the MOPSO algorithm worked well and
efficiently to optimize various parameters in the project of CO2
storage

• Possible storage capacity in case one was 139 Mt. This result shows
that more CO2 could be injected

• When added two more injectors in case two the possible storage
capacity for Dome A was increased from 139 Mt to 145 Mt

• Results indicate that even with increasing storage capacity by 4.1%
in case two, the maximum CO2 leakage did not reach the criterion
of 0.1%/year. To determine the maximum safe volume of CO2
further extended CO2 injection are required

• Based on the optimization results, well bottom-hole pressure in
observation well for both cases never exceeds the fracture pressure
of the Bunter formation. However, in case one (solution A)
pressure build-up in adjacent well cause to reduction storage
capacity by factor 2.3

Further work
Future work needs to be carried out on optimization number of

wells by applying one of those algorithm methods that are available in
Raven software.

It is recommended that further work on optimization study be
performed using differential evolution and Bayesian optimization
algorithms and needs to be compared with the results of the current
study in order to know which methods give better results.
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