
Palliative Care for Salivary Gland Dysfunction Highlights the Need for
Regenerative Therapies: A Review on Radiation and Salivary Gland Stem Cells
Alejandro Martinez Chibly1, Thao Nguyen2 and Kirsten H Limesand2*

1The University of Arizona Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ 85721, USA
2The University of Arizona Nutritional Sciences Graduate Program, Tucson, AZ 85721, USA

*Corresponding author: Kirsten H Limesand PhD, The University of Arizona Nutritional Sciences Graduate Program, 1177 E 4th Street, Shantz 421 Tucson, AZ 85721,
USA, Tel: (520) 626-4517; E-mail:limesank@u.arizona.edu

Received date: May 26, 2014, Accepted date: July 28, 2014, Published date: August 06, 2014

Copyright: © 2014 Chibly A M et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Radiotherapy remains the major course of treatment for Head and Neck cancer patients. A common
consequence of radiation treatment is dysfunction of the salivary glands, which leads to a number of oral
complications including xerostomia and dysphagia, for which there is no existent cure. Here, we briefly describe the
current palliative treatments available for patients undergoing these conditions, such as oral lubricants, saliva
substitutes, and saliva stimulants. None of these options achieves restoration of normal quality of life due to their
limited effectiveness, and in some cases, adverse side effects of their own. Other therapies under development,
such as acupuncture and electrostimulation have also yielded mixed results in clinical trials. Due to the
ineffectiveness of palliative care to restore quality of life, it is reasonable to aim for the development of regenerative
therapies that allow restoration of function of the salivary epithelium following radiation treatment. Adult stem cells
are a necessary component of wound healing, and play important roles in preserving normal function of adult
tissues. Thus, the present review mainly focuses on the effects of radiation on adult stem cells in a variety of tissues,
which may be at play in the response of salivary glands to radiation treatment. This is of clinical importance because
progenitor cells of the salivary glands have shown partial regenerative potential in mouse transplantation assays.
Therefore, understanding how these progenitor cells are affected by radiation offers potential for development of
new therapies for patients with xerostomia.
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Introduction
The current standard treatment for head and neck cancer utilizes a

multimodality approach, which includes surgery, in combination with
radiotherapy and chemotherapy [1]. One of the most common side
effects of radiotherapy treatment for head and neck cancer is
dysfunction of the salivary glands [2]. The degree of dysfunction is
dependent on the radiation dose and the amount of glandular tissue
that is exposed in the radiation field [2,3]. Histopathological changes
include loss of saliva-producing acinar cells, alteration in the
epithelium of the ductal compartment, and fibrosis [4,5]. Ultimately,
hypofunction of the salivary glands results in xerostomia, a condition
characterized by patient reported severe oral dryness [3,4]. Reduction
in saliva production and oral dryness can have a devastating effect on
oral health that potentially leads to malnutrition and poorer quality of
life [2,6,7]. In most cases, xerostomia develops into an irreversible life-
long problem despite successful treatment of the cancer [8]. In
addition, patients often need a feeding tube as they present with
varying degrees of dysphagia, which predisposes to life-threatening
pulmonary conditions [9]. Although palliative care exists to alleviate
the symptoms of mouth dryness and difficulty swallowing, there are
no definitive cures for xerostomia and dysphagia.

Palliative Care for Xerostomia and Dysphagia
The overall goal of palliative care for patients undergoing head and

neck radiation is to improve the quality of life for these individuals and
allow them to return to a “normal lifestyle” [10]. Common palliative
therapies for xerostomia include oral lubricants, saliva substitutes, and
saliva stimulants (gum, pilocarpine). Oral lubricants can include a
variety of products such as mouthwashes, gels, and toothpastes that
could protect the oral mucosa, while saliva substitutes attempt to
incorporate all the natural functions of saliva. In general, these
therapies are short-lived and have not consistently demonstrated the
ability to relieve xerostomia symptoms [11]. Saliva stimulants rely on
residual salivary gland function to provide protection to the oral
cavity. Pilocarpine is the most commonly prescribed saliva stimulant;
however due to a number of adverse side effects (excessive sweating,
rhinorrhea, and frequent urination) and contraindications in patients
with cardiovascular concerns, its utilization is limited [10,11].
Therapies currently under development include hyperbaric oxygen
(HBO) therapy, acupuncture, and electrostimulation. In a
retrospective pilot study where all patients underwent hyperbaric
oxygen therapy, there were significant improvements in salivary
secretions and a decrease in patient reported xerostomia [12]. While
the long-term improvements in xerostomia following HBO are
unknown, it is a promising treatment option for patients with long-
term salivary dysfunction where other treatments have been ineffective
[13]. The use of acupuncture for the treatment of xerostomia has had
more mixed results [14]. A recent RCT across 7 oncology centers
described reduced patient reported outcome measures related to dry
mouth when compared to oral care education sessions [15].
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Unfortunately the use of acupuncture in this study did not improve
objective measurements of salivary output, which could be related to
the long standing debate on the appropriate comparator group [14].
Overall a recent Cochrane review has determined that there is
insufficient evidence that electrostimulation or acupuncture can
consistently alleviate xerostomia [16].

Radiation-Induced Injury in Salivary Glands
It is clear that current palliative care fails to offer a decent quality of

life to patients undergoing xerostomia, and better approaches need to
be developed. In order to improve current treatments and develop
regenerative therapies, it is necessary to better understand the
mechanisms behind radiation-induced salivary dysfunction. In
general, it is known that ionizing radiation induces DNA damage,
either indirectly through the generation of reactive oxygen species
(ROS), or directly through the breakage of the DNA double strand,
which results in the acquisition of mutations or cell death [17].
Previous studies in animal models have shown that therapeutically
relevant doses of targeted radiation to the head and neck induce cell
death in the salivary glands [18,19], and chronically decrease the saliva
output [4,5,20]. Depending on the cause of injury, cell type, and
cellular response, cell death can be mediated by apoptosis and
necrosis, while autophagy seems to play a protective role [21,22]. It is
likely that all three pathways interact to determine the overall response
of the salivary epithelium to radiation damage [21,23]. Findings from
our lab demonstrated an early apoptotic response of acinar cells
following radiation treatment, which is mediated by induction of p53
[18]. Similar findings were found in cells that are highly radiosensitive,
such as thymocytes, lymphocytes, and the small intestine [24-26]. This
early apoptotic response seems to be crucial for chronic salivary
dysfunction, as several animal studies have achieved radioprotective
effects and preservation of salivary function by inhibiting apoptosis
[27,28]. Additional mechanisms have been proposed to contribute to
salivary hypofunction following radiation, such as activation of the
calcium permeable channel TRPM2 (transient potential melastatin-
like 2) [29], and a possible loss of salivary progenitors [30].

Even though salivary glands are a slowly proliferative, fully
differentiated tissue, work utilizing the ductal ligation technique has
shown that salivary glands have some capacity to regenerate following
an injury event [31-34]. Osailan et al. [31,34] demonstrated that by
ligating the rat submandibular gland with a metal clip, cellular atrophy
follows with major loss of acinar cells. When the parasympathetic
ganglion (chorda lingual nerve) is excluded from the ligation clip,
acinar cell atrophy occurs albeit the extent of atrophy is less severe.
However, once the metal clip was removed, the glands underwent a
regenerative process leading to restored glandular weight, histological
structure and secretory output [31]. While de-ligated salivary glands
appear completely restored structurally, a few defects in some
enzymatic processes remain. In contrast with ductal ligation, ionizing
radiation leads to persistent loss of salivary gland function despite
cessation of the radiotherapy treatment [1,2,6]. This clearly indicates
that radiation targets a major aspect of glandular regeneration and
wound healing, potentially stem or progenitor cells. Nonetheless,
restoration of salivary gland function has been achieved by
administrating Insulin-like growth factor 1 (IGF-1) to irradiated mice

[20]. This resulted in a normal salivary flow and amylase composition
of the glands as early as 30 days after treatment [20]. While therapeutic
administration of IGF-1 would not be clinically feasible in cancer
patients, this study shows that the salivary glands have the capacity to
regenerate following irradiation upon administration of the right
stimuli. Interestingly, concurrent administration of IGF-1 and
radiation to mice bearing head and neck cancer cell xenografts
partially modulated tumor growth rates, but when IGF-1 was
administered as a post-therapy following radiation, comparable tumor
growth delays were observed as in the radiation group [35]. The
mechanism by which IGF-1 aids in restoration of function in salivary
glands following radiation is not well understood, highlighting the
need to deepen our studies in the wound healing processes of the
salivary glands.

Effects of Radiation on Adult Stem Cells
Adult stem cells are a necessary component of wound healing

[36-39] and thus it is of great importance to understand the effects
radiation treatment has upon these cells, particularly in tissues such as
salivary glands, in which radiation-induced damage leads to a
progressive and permanent loss of function, and regeneration does not
naturally occur [20,40,41]. In the past few years, several studies have
uncovered some of the mechanisms by which radiation directly and
indirectly affects stem cells in a number of tissues (Figure 1). While
such mechanisms cannot be generalized, they may serve as clues for
what might happen in other tissues where the interaction between
stem cells and radiation is not well understood. This section focuses on
how the wound healing response is altered following radiation
treatment, such that it allows for regeneration in tissues like the
intestine, but fails to regain function in salivary glands or hair follicles.

Figure 1A summarizes the results of DNA damage as a direct
mechanism of radiation-induced injury upon stem cells. Unrepaired
DNA damage in stem cells is thought to be the cause of mutations that
leads to carcinogenesis [38,39]. Additionally, radiation has been shown
to modify gene expression in stem cells, altering cell fate decisions and
differentiation pathways [38,42-44], which can lead to inappropriate
proliferative responses or an abnormal state of quiescence [36,42]. All
these changes have the potential to disrupt wound healing; however,
stem cells have different ways of coping with DNA damage, and some
will be more efficient at repairing it. In the intestinal epithelium, the
Lgr5+ crypt base columnar (CBC) stem cells have been shown to be
somewhat radioresistant in spite of being actively dividing cells [45].
Following radiation, CBCs undergo cell death due to extensive DNA
damage, but their capacity to repair DNA more effectively through
homologous recombination (HR), rather than the more inaccurate
mechanism of non-homologous end joining (NHEJ), allows for a
subset of CBCs to survive [45]. These surviving CBCs are responsible
for regenerating the intestinal epithelium. In skin, Keratinocyte stem
cells (KSC) and Melanocyte stem cells (MSC) work together to
maintain the integrity of epidermis and hair follicles. Upon radiation
exposure, KSC are more resilient to radiation-induced apoptosis but
become largely quiescent and have reduced colony-forming activity
[46]. MSCs, in contrast, are induced to exit their niche, initiate
proliferation and subsequently differentiate into melanocytes, which
likely depletes the pool of MSCs [42,46,47].
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Figure 1: Direct and Indirect effects of Radiation to stem cells.
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In addition to these direct mechanisms in which stem cell
homeostasis is disturbed, radiation can also indirectly impair or
induce their ability to regenerate their homing tissue (Figure 1B). Stem
cells are highly dependent on their interaction with the cellular niche
in order to function properly. They maintain adhesions with their
surrounding cells, which are in part responsible for the transmission of
signals that regulate stem cell fate decisions [48]. When these
neighboring cells are damaged by external factors, signaling changes
occur that will dictate stem cell behavior. Li F. et al. [49] described a
process called Phoenix Rising, in which the apoptotic cells signal to the
neighboring stem cells to begin proliferation and tissue repair. In their
study, Caspase 3 and Caspase 7 from apoptotic cells activated calcium-
independent Phospholipase A2, which in turn increased the synthesis
of arachidonic acid, a precursor of prostaglandin E2 (PGE2). The latter
is a known inducer of stem cell proliferation and was found to increase
in response to radiation of MEF cells in a Caspase-dependent fashion
[49]. In contrast to this study, it was recently reported that apoptotic
cells in Drosophila are capable of emitting long-range signals through
the JNK pathway to induce apoptosis in distal sites (apoptosis-induced
apoptosis) [50]. Whether any of these mechanisms contribute to
radiation-induced salivary gland dysfunction remains to be
determined.

Regenerative Potential of Salivary gland Stem Cells
In salivary glands, therapeutic doses of radiation are sufficient to

induce an apoptotic response in the secretory acinar cells [18]. In turn,
increased levels of proliferation take place shortly after apoptosis, and
are sustained chronically [28]. Thus, it is feasible that the events
depicted in Figure 1 and described above could explain why radiation
treatment causes permanent damage to salivary glands. For example,
as explained in the previous sections, it is possible that radiation
treatment directly targets salivary progenitors, impairing their ability
for self-renewal and differentiation; alternatively, it is also possible that
radiation causes a disruption in cell-cell interactions, which are
required for proper function of stem cells. In fact, it was recently
reported that Keratin 5 (K5) progenitors in submandibular gland
explants from mice embryos survive after radiation treatment, but
epithelial regeneration is greatly impaired nonetheless [51]. In this
case, stimulation of the parasympathetic ganglion with neurturin
promoted glandular regeneration, suggesting that an interaction
between parasympathetic nerves and salivary progenitors must occur
in order to restore homeostasis in the salivary glands.

It has been proposed that stem cell therapies have great potential for
regeneration of the salivary glands after radiation injury [52];
therefore, it is of clinical importance to determine whether the
mechanisms shown in Figure 1 take place in the salivary epithelium. It
has been hypothesized that radiation-induced dysfunction of the
salivary glands is due to the induction of cell death in salivary gland
stem cells [30,53,54], but no scientific evidence exists to support this
theory. Nevertheless, a study showed that transplantation of c-kit+
putative salivary gland progenitors to the submandibular gland of
irradiated animals allows for partial restoration of function,
demonstrating the therapeutic potential of salivary gland stem cells
[54]. A major problem that remains in the field is the poor
characterization of adult salivary gland stem cells, which does not
allow for improvement in transplantation and regeneration therapies.
Some markers have been found in salivary gland progenitors, such as
Ascl3 [55], Keratin 5 [56], Keratin 14 [57], and c-kit [54], which have
important functions in development. However, the relative

importance of these individual progenitors in adult salivary glands, as
well as their collective role in glandular homeostasis remains elusive.
Further studies aimed at the mechanisms that prevent salivary gland
progenitors from restoring homeostasis following radiation, will
greatly facilitate the development of new therapies for patients with
salivary hypofunction.

Conclusion
Radiation-induced salivary gland dysfunction is a common problem

in head and neck cancer patients, which leads to adverse conditions
such as dysphagia and xerostomia, for which there is no cure. Given
the lack of effectiveness of the current palliative care for head and neck
cancer patients undergoing radiotherapy, it is crucial that regenerative
therapies are further developed, in order to increase quality of life of
these patients. It is vital for this purpose that studies are aimed to
better characterize salivary gland stem cells to facilitate future
mechanistic studies. Regeneration of the salivary glands has been
achieved in animal models, but the mechanisms for regeneration are
mostly unknown. The use of salivary gland stem cells remains a
promising field for developing regenerative therapies, and thus it is of
major clinical importance to characterize this population and their
involvement in radiation-induced injury to the salivary epithelium.
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