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Editorial
Parallel excitation [1,2] with a multi-element Radio Frequency 

(RF) transceiver array [3-9] as a contemporary methodology has been 
advocated for human MR imaging at ultrahigh magnetic fields (7 
Tesla and above). In ultrahigh field MRI, the required high operating 
frequency and thus shortened wavelength of radio frequency waves 
creates a complex wave behavior and increased phase variation of RF 
magnetic fields (i.e. B1 fields) in conductive and high dielectric biolog-
ical samples, such as human body, resulting in inhomogeneous image 
distribution. The inhomogeneous image distribution consequently 
leads to difficulties in quantifying the MR signal intensity. With inde-
pendent phase and amplitude control of each channel of a transceiver 
array, parallel excitation can be applied to perform B1 shimming to 
obtain uniform B1 distribution. In MR safety aspect, RF power re-
quired to excite the spins increases dramatically at ultrahigh fields 
compared with that at lower fields, e.g. 1.5T. The high RF excitation 
power results in high Specific Absorption Rate (SAR) in human body, 
ultimately increases tissue heating during MRI. It is demonstrated 
that by using the parallel excitation method, the RF excitation pro-
file can be optimized, providing in a significantly reduced SAR and 
therefore safer MRI at ultrahigh fields. In fact, the emerging method 
of parallel excitation has become essential for ultrahigh field MRI in 
addressing B1 in homogeneity, increased SAR and tissue heating.

Additionally, parallel excitation with a multi-element RF trans-
ceiver array has opened a new avenue to selective excitation in MR 
imaging, providing a fast and efficient approach to perform selective 
excitation [1,2]. Conventionally a single RF pulse is used in MRI to 
perform slice selective or multidimensional spatial selective exci-
tation by exciting the nuclei in the area of interest and limiting the 
electromagnetic signal emitted from imaging object within spatially 
restricted areas [10-16]. This often requires homogeneous RF field to 
ensure excitation accuracy. However, as described above it is techni-
cally challenging to achieve homogeneous B1 fields with the increase 
of the magnetic field strength, where the dielectric resonance [17] and 
the conductivity effect of high dielectric and conductive biological 
samples [18,19] lead to enlarged B1 field variation [20] even with an 
intrinsically homogeneous volume coil [4,21,22,23]. This effect be-
comes more pronounced at ultrahigh field such as 7 Tesla (7T) due to 
the shortened wavelength of radio frequency (RF) wave [24]. In con-
ventional selective excitations, the pulse width of the required multi-
dimensional RF pulses is usually long, resulting in a long excitation 
time, especially in applications where a large excitation Field Of View 
(FOV) is involved. Such long excitation could potentially exacerbate 
the high SAR at ultrahigh fields. Although special k-space trajectory 
such as spiral trajectory and iterative pulse design method have been 
developed to reduce the length of multidimensional RF pulse [25-27], 
multiple pulse parallel excitation method adopted from parallel im-
aging is able to significantly reduce the excitation time, providing a 
whole new approach to selective excitation and more capabilities than 
conventional single RF pulse excitation [1-3,5,6,8,9,28-30]. Parallel 
excitation RF pulses were originally designed to shorten the dura-

tion of multidimensional spatially selective excitation [1,2,28,31-35]. 
This capability has been used for both small tip-angle excitation and 
large tip-angle multidimensional RF pulses [36-38]. By using the mul-
tichannel parallel excitation, the pulse width for multidimensional 
spatial selective excitation can be dramatically reduced. Parallel ex-
citation can also take advantage of independent control of each RF 
pulse to reduce the RF power and minimize the SAR [2,39-48] dur-
ing the multidimensional spatial selective excitation. Furthermore, 
by using multiple independent RF pulses, the phase and amplitude 
of each pulse can be adjusted to manipulate the excitation profiles to 
achieve the desired RF field in conductive and high dielectric biologi-
cal sample [44,49-52]. These capabilities, achieved by utilizing the ex-
tra degree of freedom from multiple RF pulse excitation, can provide 
much more advantages over conventional single RF transmission. Ap-
parently, to design a practically optimal RF pulses for selective excita-
tion using parallel excitation, it is necessary to not only optimize the 
excitation profile homogeneity, but also minimize the peak RF power 
to reduce the SAR [27,53,54] in order to ensure the safety during MR 
examinations.

To enable parallel excitation for B1 shimming, SAR optimization 
and multiple RF pulse excitation, an MR scanner must be equipped 
with multi-channel transmitters which can independently control the 
amplitude and phase of RF pulse on each channel. However, in cur-
rent system setup, most existing MR scanners used in research insti-
tutions and clinical settings are not equipped with the multi-channel 
transmitters and thus are not capable of implementing this emerging 
concept of parallel excitation for B1 shimming, SAR optimization and 
fast selective excitation. In recent years, some parallel transmit sys-
tems have been developed to allow parallel excitation applications on 
existing MR scanners [55-57]. These designs can provide 100 Watts 
power (or higher, depending on the type of amplifiers used) for each 
RF excitation channel and can be used for simultaneously multiple RF 
pulse excitations on commercial MR scanners.

In practice, it is desired to have a multi-channel transmitter sys-
tem which is easy to be integrated to the existing MR scanners. In this 
research endeavor, a PC controlled 8-channel transmit circuit with 
independent phase and amplitude for each channel for 7T MR scan-
ner has been proposed [57]. In this design, the phase and amplitude of 
each channel are adjusted by voltage control phase shifter and attenu-
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ator respectively. Both control voltages are communicated through a 
PC via a 16-channel Digital Analog Converter (DAC). The input of 
this circuit can be the RF pulse generated by the signal generator of 
the MR spectrometer. Through this phase and amplitude control cir-
cuit, the output signal of each channel can be amplified for spin exci-
tation by RF amplifiers which could be either regular RF amplifiers or 
on-coil MOSFET amplifiers [58,59]. Figure 1 shows the block diagram 
of this multi-channel transmitter circuit design. The PC is utilized 
to send out digital voltages which determine the phase shift and am-
plitude change of each channel. The circuit board of the 8-channel 
transmit system is shown in Figure 2. A Graphic User Interface (GUI) 
for PC was also developed to facilitate the control of the output volt-
ages of the DAC (Figure 3).

We utilized the benchmark signal to test its performance. A 
298MHz sine waveform was output to the 8-channel transmit circuit 
and an oscilloscope was used to display the output waveforms from 
the circuit. The phases and amplitude varying with the control volt-

ages were plotted in Figure 4, demonstrating the sufficient dynamic 
range of the design for MR applications. Several samples of the pulse 
waveforms with different phases and amplitudes are shown in Figure 
5. By synchronizing the clock signal to the excitation signal of MRI 
scanner, this design should be readily integrated to existing MR scan-
ner.

This PC controlled 8-channel transmit circuit design provides a 
comparatively simple way to enable parallel excitation applications for 
the existing MR scanners that are not equipped with multi-channel 
transmitter systems. With this, parallel excitation for B1 shimming, 
SAR optimization and fast selective excitation can be performed.
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Figure 1: Block diagram of the multi-channel transmit circuit. The personal 
computer (PC) is utilized to send out digital voltages which determine how 
many degree and dB the phase and the amplitude of each channel are to be 
adjusted respectively. These digital voltages are converted to analog voltages 
using the 12-bit DAC. The outputs of the DAC are connected to the control 
pins of the voltage variable phase shifters and attenuators respectively (yellow 
lines) to control the phase and amplitude of the 8-transmit channels. Thus the 
output RF pulse of each transmit channel can be with independent phase and 
amplitude. The output of each channel is then amplified for spin excitation by 
a regular RF amplifier or an on-coil MOSFET amplifier.

Figure 2: The circuit board of the 8-channel transmits system (low power part) 
with independent phase and amplitude control.
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Figure 3: The graphic user interface (GUI) for Windows system on PC for multi-
channel transmit control, providing a user-friendly operation.
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Figure 4: Phase (upper insert) and amplitude (low insert) varies with phase 
control voltage and amplitude control voltage at 4 different power attenua-
tions, respectively. When the phase control voltage varies from 0V to 12V, the 
pulse phase can be shifted from -30º to 380 º. When the voltage varies from 
0V to 10V the output power can be attenuated from 31dB to 5dB.
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Figure 5: Samples of waveform with different phases (a) or amplitudes (b) 
output from the multi-channel transmit circuit.
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