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Introduction
Community scale renewable energy generation has been increasing 

in popularity over the last decade. Notable projects are successfully 
operating in Florida, Colorado, and Arizona with more than 750 
participants in the case of the Bright Tuscon Community Solar Program 
in Arizona. As the green movement continues to increase awareness of 
an interest in renewable energy use, having means of properly selecting 
and sizing a system becomes a must [1].

Beyond the benefits of economies of scale cost reduction and 
improved solar and wind resource availability, community systems 
allow individuals who are either unwilling or unable to install on-
site solar and/or wind generation to opt in to local programs. The 
National Renewable Energy Laboratory has found that only 22 to 
27% of residential rooftop area can feasibly be equipped with solar 
photovoltaics [2]. Local programs may offer economic incentives, 
independence from the grid, and intangible benefits stemming from 
environmental benefits.

Previous work has explored the potential for stored energy 
management and demand manipulation using user feedback and 
financial incentives [3]. To build upon that initial framework, we will 
investigate the potential benefit of implementing a community scale 
project over individual scale systems from a load aggregation and 
storage perspective. This paper will not include a study of electrical 
storage because the local grid network can act as an electric storage 
system [4].

To adequately compare individual versus community scale 
renewable energy generation, the various nuances between the two 
scales must be accounted for and modeled. The main differences 
between the two scales are: cost per watt (installed, maintenance, 
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Abstract
Renewable energy technologies, most notably wind, solar hot water, and solar photovoltaic are not always 

available to the residential sector due to financial and feasibility challenges. In this paper we investigate the potential 
benefit of aggregating residential loads to more closely match the renewable energy generation profiles and to have 
a smoother energy demand curve which can be more efficiently supplied by an energy storage system.

Four individual residential load profiles are matched against an optimized combination of wind, solar hot water, 
and solar photovoltaic generation. A simulation is then run to assess the percentage of the demand which must 
be supplied via auxiliary energy sources (i.e. the grid) with and without a thermal energy storage system. Finally, 
these four load profiles are randomly combined to create a 50 user community load profile. This aggregated profile 
is also matched against the renewable energy generation and the results are compared to individual load profile 
performance metrics for January, April, and July data.

In the April and July cases, the community load profile reduced the demand supplied by auxiliary energy by as 
much as 5% on average in a simple system without storage (An improvement over the average of the individual 
loads of about 11%). With storage, a community system reduces demand supplied by auxiliary energy by about 
0.8%, which is an improvement over the average individual loads of also about 11%. It is concluded that community 
shared renewable energy systems can be beneficial not only in terms of economics and feasibility, but also in terms 
of thermodynamics, which is often overlooked.

insurance, etc. for both solar and wind), land use, solar resource 
factors (shading, orientation options), wind resource (blockages, hub 
height), load profiles, storage capacity, and energy cost. The first step 
to creating a complete model comparing individual vs. community 
resource generation, on which this paper is focused, is load profile 
analysis. Several simplifying assumptions regarding data and system 
performance are made along the way, and each will be discussed as it 
arises. As this work develops, a complete network model detailing each 
household’s consumption, as was done in [5] will further validate these 
results and reduce the dependent assumptions. Further, generalized 
metrics in terms of renewable energy integration into large systems can 
be tested, as proposed by Tarroja et al. [6].

Methodology
Load profiles

Prior to any benefits in terms of economies of scale and shared 
costs, an aggregated load profile in itself can support the argument for 
community scale renewable energy use. An aggregated load can increase 
the temporal load generation and demand alignment, thereby reducing 
the need for storage or auxiliary energy use. Further, spikes in energy 
usage may be tempered given the variability of energy use between 
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households. This reduction in overall variability of consumption also 
allows for more accurate load prediction. As we will discuss later, load 
prediction has the potential to allow for better decision making with 
regards to stored energy use and secondary load demands.

To simulate an aggregated load profile, we created four unique load 
profiles. These profiles are roughly based on typical lifestyles as follows.

• Standard workday (8-5) 

• Offset standard workday (10-7) 

• Retired (home most of the day) 

• On vacation (rarely home) 

Each of these load profiles is broken down into thermal and 
electrical demand. Thermal demand is then further broken down to 
include the added demand during the cold season. Similarly, electrical 
demand is separated into electrical equipment, which is assumed to 
be constant throughout the year, and air conditioning load, which 
is considered from June to August. The load profile for the standard 
workday user is shown below in Figure 1. This profile is referenced from 
[4]. Each of the three other profiles is adapted from this general profile.

To generate the community demand profile, we must first select the 
number of users (households) studied. In our initial sample case study, 
we will assume a community of 50 households. These 50 households 
are then each assigned one of the different user types as well as a 
rudimentary usage scale. This usage scale has three simple categories, 
low use (0.7), average use (1), and high use (1.3). Using random numbers 
to assign usage scale and user type, we create a fully defined aggregate 
community demand profile. A sample aggregated load is shown below 
in Figure 2. To account for the variability of randomly generated 
community load profiles, 300 separate combinations are analyzed and 
averaged to be compared to the individual user type metrics.

Figure 2 highlights the potential for peak reduction and overall 
load smoothing. However, the limitation of this simulation is that 
load profiles are highly variable in the real world. The final shape of 
the community demand profile is sensitive to the original assumed 
profiles. In addition, these profiles are based off of hourly data, missing 
the detailed peaks and valleys which are typical of real-time usage 
data. Lastly, although the generation curves are adjusted for summer, 
winter, and shoulder seasons, they address only one specific climate. 
Nevertheless, these sensitivities can be incorporated into the final 
analysis to assess the robustness of the final conclusions drawn.

Energy generation

We assume three sources of energy for this paper: solar photovoltaic, 
solar thermal, and wind. By scaling each of these individually, we 
can determine the optimal sizing for the entire system using any 
combination of these sources. The complexity of the optimization comes 
from the interplay of optimal storage capacity, seasonal efficiency, and 
the balance of wind and solar photovoltaic scaling for load matching.

To simplify the optimization, we will consider the community 
project to be based in Germany, which is the same location from which 
the general demand profile as well as the general energy generation 
profiles originate.

In order to improve the analysis, the generation profiles for solar 
photovoltaic and solar hot water are seasonally adjusted from the 
common generation profile. Accounting for the variability of sunshine 
hours, the generation is separated into summer, shoulder, and winter 
seasons based on the hours of daylight received at Germany’s latitude.

To illustrate the generation, an overlay of the various energy inputs 
to the system for both summer and winter seasons is shown below in 
Figures 3 and 4. Both solar based energy sources are given the same 
curves, which are correlated to the amount of available sunlight for 
the studied season. The wind energy generation is the greatest in the 
winter, and smallest in the summer. From these individual curves, each 
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Figure 1: General demand profile for standard workday user.
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Figure 2: Sample demand profile for aggregated community demand 
profile.
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Figure 3: Energy generation profiles for the representative winter day.
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is scaled up or down as necessary in order to maximize the overlap 
between energy load and generation.

Load matching

To set the baseline for our analysis, we consider the overlap of 
energy demand and generation for both the single user cases and 
the community case. The renewable energy utilization then becomes 
apparent as the overlapping areas under the curves. To illustrate this, 
the baseline load matching for the sample community load profile and 
energy generation in January for both thermal and electrical cases is 
shown below in Figures 5 and 6.

These data presented in Figures 5 and 6 represent a system sized 
for the average demand of the standard workday in a winter season. 
That is to say, with a perfect storage system, all of the demand could 
be supplied by the generated renewable energy. The parametric study 
of the impact of various combinations of load profiles on the final load 
matching and storage efficacy will then be conducted for a system sized 
to the average demand for each of the seasons, summer, winter, and 
shoulder.

Storage analysis

We incorporated a thermal storage system into the analysis using 
three losses. A separate coefficient for energy entering, idling in, and 
leaving the storage facility allows us to further study the effects of 

storage system performance on overall renewable energy utilization 
and therefore auxiliary energy use, which we seek to minimize. The 
tested loss coefficient combinations are outlined in Table 1 below.

The analysis is conducted on an hourly basis. For each case, excess 
generation is placed into storage after accounting for a loss. Then, hour 
by hour, depending on the net balance of generation and demand, more 
energy is stored, or stored energy is used, again accounting for a loss. 
A sample of the thermal storage analysis is shown below in Figure 7.

The entire methodology is essentially a spreadsheet keeping track of 
all the energy levels and assigning losses to the thermal energy. Figure 
7 above shows the results of such bookkeeping. The energy use follows 
a simple rule of storing when there is excess, and using stored energy 
when the generation does not meet the demand. Further studies aim 
to incorporate real-time cost data, load prediction, and even dynamic 
energy rates to provide an incentive for users to shift their energy 
consumption to times of peak generation.

As shown in Figure 7, the use of a storage system can greatly reduce 
the need for auxiliary power usage. The Aux. curve remains at 0 until 
the end of the day, when there is no more thermal energy generation 
due to the lack of sunlight, and when the stored energy is depleted. 
Without a storage system, much of the energy generated would lose 
due to the poor alignment of demand and generation. We will show in 
the following section that even with high loss coefficients the storage 
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Figure 4: Energy generation profiles for the representative summer.
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Figure 5: Thermal load matching for one combination of a community 
scale system using January data.
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Figure 6: Electrical load matching for one instance of community 
scale system using January data.
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Figure 7: Thermal storage analysis for community scale system 
using April data.
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system can greatly reduce the auxiliary energy use, resulting in large 
savings in terms of costs and primary energy consumption.

Results
There are four metrics output for each studied set of loss coefficients 

and seasons. The first is the percent of the demand met by auxiliary 
energy sources (i.e. the grid) without considering any storage. Simply 
put, it is how well the demand and generation are matched. Next, 
the auxiliary energy use when storage is implemented is considered. 
Finally, the percentage of generated energy lost due to inefficiencies 
in the storage system and the reduction of auxiliary energy use are 
output. These various metrics are compared across different seasons, 
loss coefficients, and user profiles.

A total of 27 cases are simulated. January, April, and July data are 
simulated under low, medium, and high loss coefficients for a total 
of 9 simulations. These 9 simulations are then each considered for a 
renewable energy generation system sized to the average load of the 
standard workday user for January, April, and July. As expected, the 
system sized to the January average load results in an oversized system 
in April and July.

Based on the simulation results, the ideal annual system sizing 
is determined. This “optimal” sizing will not be completely accurate 
however, given that only three months of the year are considered. 
Optimal system sizing is not the focus of this paper, so the sizing 
conclusions drawn are merely to be taken as a first step towards the 
appropriate sizing of the system.

When the generation system is sized to the average load for each 
of the three months, the individual sizing of the wind, solar thermal, 
and solar photovoltaic system is optimized for the best thermal and 
electrical match between the load and generation. In this simple case 
study, we do not consider the effect of a storage system in the optimal 
system sizing methodology.

As previously mentioned, the community case represents an 
average of 300 random combinations of load profiles and energy usage 
intensities. This serves to reduce the potential for a smaller sample of 
community profiles yielding results which are significantly different 
from the mean. The results from select cases are shown below, followed 
by general conclusions drawn from the simulations.

The above summarized scales for the different technologies, solar 
photovoltaic, solar hot water, and wind show both the relative total 
loads between seasons and the value of each of these technologies in 
matching the energy demand. All of the values in the Tables 1-5 are 
based on the original generation and demand curves from Figures 1-4.

It is important to note that wind energy is harvested throughout 
the entire day, while solar photovoltaic energy is only available for part 

of the day. Wind energy is therefore more useful in the system studied. 
Having some energy available approximately all day is very important 
for matching the constant demand of users. In order to further 
optimize the balance between the technologies, an economic analysis 
is necessary. The solar photovoltaic generation does play the important 
role of increasing generation during the peak consumption times. The 
relationship between the two technologies can be loosely compared to a 
base load being catered by the wind, with the photovoltaic’s taking the 
role of a peaking plant.

Another observation from the scaling is the ratio of SPV to wind for 
the three seasons. January clearly has higher peak loads, as suggested 
by the higher SPV scale and lower wind scale. The reverse is true for 
the summer case of July. The energy use is more constant and therefore 
wind energy proves more useful.

This set of outputs for the January scaled system including a 
community of 50 users serves to illustrate the sensitivity of the storage 
performance to the variable aggregated profiles. With 300 random 
combinations of load profiles, the range of auxiliary energy use 
reduction was only 1.14%. This strongly suggests that no matter what 

Scale Low Med High
Loss in (%) 0.025 0.05 0.1
Loss out (%) 0.015 0.03 0.06
Loss stored (%) 0.005 0.01 0.02

Table 1: Details for tested loss coefficient scales.

Resource SPV SHW Wind
January 0.5 2.11 1.22
April 0.48 0.53 1.32
July 0.33 0.45 2.95

Table 2: Optimized renewable energy technology scaling for best demand/
generation match.

User Aux Base Aux 
Storage

Stor. 
Losses

Storage 
Gain

1 54.06% 21.50% 14.73% 32.57%
2 48.90% 16.76% 13.21% 32.13%
3 51.05% 21.50% 14.12% 29.55%
4 51.05% 18.48% 14.22% 32.57%

Com.

Mean 51.59% 19.78% 14.13% 31.80%
Dev. 0.35% 0.31% 0.41% 0.21%
Range 1.70% 1.56% 2.23% 1.14%
Min 50.71% 18.95% 13.06% 31.13%
Max 52.41% 20.50% 15.29% 32.28%

Table 3: January storage performance metrics for renewable system sized to Janu-
ary average load.

User Aux Basic Aux 
Storage

Stor. 
Losses

Storage 
Gain

1 55.93% 12.86% 14.15% 43.07%
2 56.56% 13.44% 15.05% 43.11%
3 39.29% 8.51% 9.71% 30.78%
4 39.80% 10.49% 11.35% 29.31%

Com.

Mean 43.01% 10.18% 11.38% 32.83%
Dev. 1.20% 2.11% 0.56% 2.11%
Range 7.64% 12.59% 3.55% 12.14%
Min 40.54% 3.47% 9.77% 27.35%
Max 48.18% 16.05% 13.32% 39.50%

Table 4: April storage performance metrics for renewable system sized to April 
average load.

User Aux Basic Aux 
Storage

Stor. 
Losses

Storage 
Gain

1 56.34% 11.78% 13.57% 44.56%
2 57.57% 13.51% 15.05% 44.06%
3 39.32% 8.51% 9.55% 30.81%
4 35.51% 9.92% 10.65% 25.59%

Com.

Mean 43.05% 10.23% 11.23% 32.82%
Dev. 1.68% 2.05% 0.55% 2.04%
Range 9.42% 13.06% 2.94% 11.07%
Min 38.83% 2.89% 9.67% 27.42%
Max 48.26% 15.95% 12.61% 38.49%

Table 5: July storage performance metrics for renewable system sized to July 
average load.
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the individual loads each community member has, a storage system will 
always save approximately 31.8% of the auxiliary energy use. It is also 
important to note that for this case, the community auxiliary energy 
use for both the storage and non-storage case is virtually identical to 
the weighted average of the individual users (Users 1 through 4 are 
weighted 30%, 20%, 20% and 20%, respectively).

The January scaled system proved to be grossly oversized for the 
April and July months studied, resulting in a <1% auxiliary energy 
usage once storage was included in the simulation. While useful for 
illustration purposes, a system designed to the January loads would be 
sub-optimal given the cost of implementing such a system.

Unlike the January case, the range of auxiliary energy use with an 
incorporated storage system is significant, at about 12.6%, with a mean 
of 10.2%. The parametric study for this case has revealed that some 
combinations of load profiles can results in an auxiliary energy use 
of only 3.5% after storage. The result is an improvement on any of the 
individual users alone. However, the reality is that load profiles are not 
constant from user to user, or even day to day. While the 3.5% figure is 
very strong, we must focus on the mean auxiliary energy use, as it more 
accurately reflects the transience of energy usage in the real world. Still, 
the mean auxiliary energy use with storage of 10.2% is better than the 
simple weighted average of 11.5% for users 1 through 4. This suggests 
that the combination of the load profiles does in fact cater to a better 
shaped usage profile for storage use. Further, the non-storage case of 
simple load matching is also an improvement on the simple weighted 
average result of 48.7%. The results for these simulations suggest that 
load aggregation does in fact reduce the auxiliary energy usage by at 
least 5% prior to any storage use. For the 50 user community, this is 
effectively saving the energy consumption of 2-3 households.

The July simulation has similar results. The aggregated community 
profile results in an improvement in both auxiliary energy uses for both 
storage and non-storage systems over the weighted averages. In the 
simple load matching, non-storage case, the community system reduces 
the auxiliary energy use by 5%. The improvement over the average for 
the storage scenario is only about 0.8% of auxiliary energy use, but it 
is still worth noting given that the total use after storage is only about 
11%. In fact, the worst combination of load profiles and usage intensities 
results in an auxiliary energy use of about 48%, which is still lower than 
the 56% observed for a traditional, standard workday load profile user.

The performance of the system was not significantly impacted by 
the loss coefficients tested. We therefore conclude that these results are 
general for a variety of system efficiencies. That is to say, the general 
conclusion that community loads result in a smoother load profile that 
is more suited to storage holds. The optimally sized system based on 
this study is the one sized to the shoulder season average load. This is 
unsurprising at the shoulder season represents a more average annual 
load.

Overall, the results shown above support the idea that aggregated 
loads can improve auxiliary energy usage purely on the basis of energy 
generation and demand matching. This basic improvement is just the 
first benefit. Aggregated loads allow for better energy management 
and storage thanks to improved of load prediction and demand 

variability. Finally, aggregated community loads have the social benefit 
of providing users with access to renewable energy that are otherwise 
unable or unwilling to install personal scale renewable energy systems.

Conclusions
Addressing the loads of a community as a whole, rather than on 

an individual basis with renewable energy can lead to more efficient 
use of the available energy. In this paper, we simulated the hourly 
energy balance for four unique load profiles as well as for a community 
load profile made up of a random combination of the four individual 
profiles. The summer, winter, and shoulder seasons are studied via 
representative months.

In the summer and shoulder season case, the community load 
profile improves the generation and demand transient overlap as well 
as the auxiliary energy usage for a system using thermal storage. Given 
that net metering contracts are increasingly available with utilities, 
electrical storage was not considered in this paper.
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