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Abstract

Background: Spinal cord stimulation (SCS) is a safe and effective treatment for refractory failed back surgery
syndrome (FBSS). Two implantation procedures exist depending on the use of a surgical versus percutaneous lead.
Percutaneous leads implantation is less invasive but the placement procedure requires a higher X-ray exposure.

The new MRI compatible shielded percutaneous leads (Vectris®) appear to be stiffer and therefore seem to be
easier to implant compared to unshielded percutaneous electrodes (Octad®).

The aim of this study is to compare the radiation exposure between percutaneous shielded leads and
percutaneous unshielded leads in SCS implantation.

Setting: Retrospective study.

Material and methods: 20 patients successively underwent SCS for FBSS. The first 10 patients were implanted
with an Octad ® lead and the 10 following with a shielded Vectris ® lead. All patients were operated on by the same
surgical team. In all cases, the same intra-operative X-rays device (Ziehm Vision 8000®) was used, with identical
parameters aiming at a minimal X-rays exposure (pulse mode with 2 impulses/sec, and automatic mode for kVp and
mAs).

Results: Fluoroscopy time was significantly lower in patients implanted with the Vectris® lead (mean: 99
seconds) compared to the Octad® lead (mean: 291 seconds) (p=0.0035).

Subsequently, total patient X-rays exposure in the Vectris group (mean 592 cGycm2) was significantly lower than
in the Octad® group (mean: 1899 cGycm2) (p=0.0005).

Conclusion: The use of MRI compatible shielded percutaneous leads significantly reduces the fluoroscopy time
and the total X-ray exposure in SCS implantation.
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Introduction
Spinal cord stimulation was first described at the end of the sixties

by Shealy et al. [1] This safe method of treatment has been proven to
be efficient in a large variety of pathologies, such as complex regional
pain syndrome, intractable angina pectoris, peripheral ischemic
neuropathies and so on, but to this day, refractory failed back surgery
syndrome (FBSS) remains the main indication [2,3]. The first step of
the treatment involves the insertion of the lead into the epidural space.
Two implantation techniques can be performed, depending on
whether a surgical or percutaneous lead is used.

Neurosurgeons generally favor the surgical approach, while
interventional pain clinicians are more comfortable with the
percutaneous approach. But putting personal preferences aside, both

approaches come with advantages and disadvantages. The
implantation of surgical paddle lead is more invasive [4] and therefore
tends to be performed under general anesthesia without the ability to
test the coverage of the pain area [5,6]. However, due to the shape of
the lead and the greater number of stimulation contacts, surgical
electrodes are more efficient in the treatment of lower back pain [6,7].
Another advantage of surgical lead is that the paddle placement is
performed under visual control, thereby requiring less fluoroscopy [4].
Alternatively to the surgical approach, SCS electrodes can be
implanted percutaneous. This less invasive procedure is done under
local anesthesia; the patient is awake and can guide the surgeon in the
exact positioning of the electrode, to insure coverage of pain area [8].
Because this procedure is less invasive, postoperative pain is reduced,
as is the length of hospitalization. The main concerns with the use of
percutaneous leads are the difficulty to cover lower back pain and the
X-ray exposure for lead placement [9,10]. X-rays are known to be the
cause of various harmful biological effects due to the production of
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free radicals, involved in carcinogenesis [11]. The biological
deterministic effects of radiation from fluoroscopy depend on the
dose, duration and distance of X-ray source [11,12]. Part of the energy
released by the X-ray is deflected and scattered from its original path
with less energy. This secondary scattered radiation does not
contribute to the radiographic image and can be hazardous to the
operator. It is therefore important to protect patients from such
effects, especially given that radiation dose is cumulative [12]. One of
the main concerns regarding percutaneous lead implantation is that
the technique relies essentially on the use of X-ray fluoroscopy to
guide needle insertion and lead placement, with an X-ray exposure
significantly higher than in surgical electrode implantation. Recently, a
newly developed, MRI compatible, percutaneous SCS electrode has
been developed (Vectris®, Medtronic Neuromodulation, Minneapolis,
MN, USA). The structure of this lead is shielded and therefore more
rigid. Due to this property, the Vectris® electrode seems to be easier to
control and to implant for SCS. The aim of this study is to compare X-
ray exposure in patients implanted with a percutaneous unshielded
(Octad®) versus shielded lead (Vectris®).

Material and Methods

Patients
Between October 2012 and March 2014, 20 patients (8 females and

12 males) underwent successively percutaneous SCS trialing
procedures in the Neurosurgery Department of the University
Hospital of Charleroi, Belgium. All procedures were performed by the
same experimented surgical team, made up of a neurosurgeon and a
interventional pain physician.

Eligible patients suffered from FBSS with neuropathic pain
predominantly in the legs, of an intensity of at least 50 mm on a visual
analogue scale (VAS: 0 equaling no pain, to 100 mm representing the
worst possible pain). The pain was present for at least 6 months after a
minimum of one anatomically successful lumbar surgery (i.e., lumbar
disc surgery, laminectomy with or without foraminotomy and/or
spinal fusion).

The neuropathic nature of pain was checked as per routine practice
at the center (i.e. by clinical investigation of pain distribution, DN4
questionnaire, examination of sensory/motor/reflex change, with
supporting tests such as X-ray, MRI and EMG).

Conservative treatments including opioids, anti-depressant drugs,
gabapentin, multiple infiltrations, physiotherapy, TENS, and others
were tried but were not efficient.

All cases were discussed during a multidisciplinary meeting
comprising of neurosurgeon, pain clinician and psychiatrist, before a
spinal cord stimulation trial was decided. All patients then underwent
a four week screening trial with a percutaneous lead.

Implantation procedure
All 20 patients were implanted with a percutaneous lead; the first 10

with a unshielded lead (Octad®, Medtronic Neuromodulation,
Minneapolis, MN, USA) and the last 10 with a shielded MRI
compatible lead (Vectris® Medtronic Neuromodulation, Minneapolis,
MN, USA). The implantation technique was the same for all patients.

Patients were positioned prone on an adjustable fluoroscopy table. The
procedure was performed under local anesthesia. The incision was
made just above the previous lumbar scar. The Tuohy incurved needle
was introduced into the epidural space. The lead was then placed
under fluoroscopic control up to D8-D9-D10. Perioperative
stimulation was then performed to obtain the optimal pain coverage.

The needle was then removed and the lead fixed to the muscular
fascia with an Injex® Anchoring System (Models 97791 from
Medtronic Inc., Minneapolis, MN, USA). To avoid migration of the
lead, a loop was formed and the lead connected to an external
extension for the 4-weeks trial period.

Perioperative fluoroscopy
Fluoroscopic guidance was achieved using a mobile C-arm

fluoroscopy system (Ziehm Vision 8000®, Ziehm Imaging Inc., Florida,
USA). The same neurosurgeon, certified in radioprotection, utilized
and operated the fluoroscope. The fluoroscope was deemed to be in
compliance with all federal and state rules/regulations, as well as
manufacturer calibrations and physics acceptance testing.

A pulsed mode fixed at 2-pulses per second was used in all
procedures. The applied constructs of the radiation safety program are
described here. Fluoroscopic imaging was properly used, in that the
fluoroscope was only activated when localizing, adjusting, or
advancing a needle/lead. The low dose and automatic brightness
control features were used with a 23 cm field of view (FoV) (i.e., the
normal magnification mode). The C-arm anti-scatter grid was not
removed. Automatic kilovolt peak/kilovolt potential (kVp) and
milliampers (mA) determine the best images on the screen with lower
radiation doses. Also, an electronic collimation was used and no zoom
function was applied.

Studied data and statistical analysis
At the end of the procedure, data regarding fluoroscopy time and

X-ray exposure was collected. X-ray exposure was calculated using the
dose area product (DAP).

The fluoroscopy system automatically tabulated and stored total
fluoroscopy time (in seconds) and DAP (in cGycm2) per case. Analysis
of fluoroscopy time and DAP was conducted by means of summary
statistics (GraphPad Prism version 6.00 for Mac OS X, GraphPad
Software, La Jolla California USA). An unpaired t-test with Welch’s
correction was used for statistical analysis because the two groups do
not have equal standard deviation.

Results
General radiation exposure data of the two patient groups are

summarized in Table 1. The first group was implanted with unshielded
Octad® percutaneous lead, composed of 5 women and 5 men. The
mean group age at implantation time was 51 years. In the second
group, implanted with a shielded Vectris® percutaneous lead, we had 3
women and 7 men. The mean group age at implantation time was 43
years. Patients in the Vectris® group were significantly younger than
those in the Octad® group.
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Octad® Unshielded Precutaneous Octad®shielded Precutaneous

Patient Sex Age (years) Fluoroscopy Time
(sec)

DAP(cGycm2) Patient Sex Age (years) Fluoroscopy Time
(sec)

DAP(cGycm2)

1 F 44 144 1209,83 1 F 55 100 455,67

2 F 46 404 2512,75 2 M 44 87 541,54

3 F 62 474 3234,64 3 M 44 56 346,1

4 M 52 84 1187,99 4 F 47 142 749,3

5 M 59 110 457,84 5 M 44 54 289,87

6 F 39 511 2453,04 6 M 41 84 560,82

7 M 46 352 1896,08 7 M 39 133 720,53

8 F 53 374 1980,56 8 M 44 77 565,77

9 M 51 166 1598,02 9 F 36 118 475,35

10 M 51 291 2463,46 10 H 43 137 1167,53

Table 1: Patient general characteristics in both studied group. DAP: Dose Area Product

Fluoroscopy time
Mean fluoroscopy time was 291 seconds with a standard error of

the mean (SEM) of 49 seconds for the unshielded lead group (Octad®).
For the shielded lead group (Vectris®), fluoroscopy time was 99
seconds with a SEM of 10 seconds. We observed a statistical difference
in fluoroscopy time between the two groups (p < 0,0035) (Figure 1).
Only pulsed fluoroscopy was used for all patients with a range of 2
pulses/second.

Dose Area Product (DAP)
Mean DAP was 1900 cGycm2 with a standard error of the mean

(SEM) of 256,9 cGy.cm2 for the unshielded lead group (Octad®). For
the shielded lead group (Vectris®), the mean DAP was 592 cGy.cm2

with a SEM of 80 cGy.cm2. We observed a statistical difference in
DAP, reflecting patient radiation exposition (p<0.0005). Figure 2
shows DAP summary statistics across the two percutaneous lead
groups.

Figure 2: Statistical plot representation of DAP for unshielded
Octad® lead versus shielded Vectris® lead implantation. Statistical
ranges represent mean DAP in cGy.cm2 ± SEM

Discussion
Failed Back Surgery Syndrome (FBSS) remains a major source of

neuropathic pain effecting up to 40% of patients undergoing lumbar
surgery. The syndrome is characterized by the association of radicular
neuropathic leg pain and disabling low back pain [13].
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Multiple clinical studies have demonstrated the efficiency and safety
of spinal cord stimulation in that indication [2,14]. Two types of leads
can be used for the procedure: a surgical multicolumn paddle lead or a
cylindrical percutaneous lead. Though the multicolumn surgical
paddle electrode seems to be more efficient in alleviating the low back
pain component [6,7] both types of leads are equivalent in the
treatment of radicular neuropathic leg pain. In this study, the
neuropathic radicular component was more important than low back
pain, which is why percutaneous electrodes were implanted.
Percutaneous leads are advantageous since they require a less invasive
implantation procedure, which can be performed under local
anesthesia, with feedback while the patient is awake. However,
fluoroscopic guidance is required and with it a non-negligible
radiation exposure for the physician, the patient, as well as the
operating room staff. In the past few years, the assessment of radiation
dose has received more attention. Especially in the demonstration of
deterministic effects of X-ray correlated to the dose and for which dose
thresholds have been fixed [9,15,16]. Radiation exposure can also be
associated to biological modifications leading to stochastic adverse
effects. Multiple dose reduction techniques exist, but the material used
is also an important factor in terms of ease of placement. The shielded
MRI compatible electrode is more rigid, making it easier to place,
without relying so much on fluoroscopic guidance.

So far, only one article has been published in regards to X-ray
exposure in SCS percutaneous lead implantation [10]. In this
retrospective study, 110 SCS trailing procedures were performed by
the same interventional spine team in an outpatient interventional
pain management practice. The aim of the study was to report mean
fluoroscopy time in the placement of percutaneous SCS lead, thereby
providing a dosimetric reference level for such procedures. The mean
total fluoroscopy time was 133.4 seconds (SD: 84.8 seconds). The
authors concluded that fluoroscopy time associated with SCS may be
considerable, compared to others interventional pain treatments. They
suggested that deterministic effects exist but however, remain rare
[10].

In our preliminary study, we compared radiation exposure between
the implantation of unshielded versus the shielded percutaneous leads.
We have found the mean fluoroscopy time as well as patient X-ray
exposure to be significantly lower in patients implanted with the
shielded electrode compared to the unshielded one. Those results
reinforce the argument that the more rigid structure of the new lead
allows for a better guidance, therefore decreasing radiation needs for
the lead placement. Nevertheless, our study has its limitations among
which its small sample size and the retrospective aspect. Further
prospective studies with larger samples of patients still need to be
performed. Those encouraging results must of course be associated
with the knowledge of fundamental technical means to maximally
reduce X-ray exposure, for patients as well as for practitioners. First of
all, the fluoroscopy system has to comply with all federal and state
rules/regulations, as well as manufacturer calibrations and physics
acceptance testing. The fundamental principles of radiation protection
include: 1) a perfect positioning of the C-arm fluoroscope in order to
maximize the distance between the patient and operator from the
radiation dose, 2) minimizing exposure time by using fluoroscopy only
when necessary to check needle position and lead placement, and by
avoiding the use of the C-arm by anyone else than the operator.

Multiple dose reduction techniques must been applied such as: 1)
using pulse/boost fluoroscopy mode, 2) adjusting the beam quality, 3)
maximally reduce the number of pulses per seconds when working on

automatic mode, 4) avoiding the use of the zoom and using the
collimation, 5) removing the grid, when possible, 6) last image
holding. Finally, the application of the ALARA principle (as low as
reasonably achievable) will keep radiation within the recommended
and safe limits [16,17].

Conclusions
The use of percutaneous leads in spinal cord stimulation is often

associated to high radiation exposure because of the necessity of
fluoroscopic guidance for the lead placement. In this preliminary
report we demonstrated that the new MRI compatible shielded
percutaneous leads are associated to a statistically significant reduction
in X-ray exposure. However, those encouraging preliminary results
remain to be confirmed by larger studies with a higher level of
evidence.
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